It is inevitable that wear on the surfaces occur when especially metal surfaces contact each other. One of the most crucial problems among surface machining is wear problem. In this study, surface of 316 sainless steel was coated with boron via plasm arc method. 160, 165 and 170 current values were utilized as welding parameters.
The effect of hard structures occurring over the coating region on substrate wear resistance was investigated when welding parameters used in the study started to solidify after coating. The wear process was carried out on the pin ten disc device using a fixed load (10 N) and sliding speed (0.4 m / s) and at different sliding distances (250 m, 500 m and 1000 m) using stalked grit sandpaper. After the wear process, the characterization of the wear zone was conducted determining it with the help of SEM-EDX.
It was determined from optical microscope and SEM analysis that the coating area consisted of cellular, branched and leaf-shaped dendritics; and eutectic structures were formed between these dendritics. As a result of EDX taken from coated region, Fe, B and Cr elements were found. While the highest weight loss occurred in 316 satinless steel with 45 mg, the lowest weight loss was obtained from Boron2 sample with 27 mg. After wear test, low mass loss in samples coated with Boron shows that substrate sample wear resistance increased.
Primary Language | English |
---|---|
Subjects | Mechanical Engineering |
Journal Section | Research Article |
Authors | |
Publication Date | June 1, 2020 |
Published in Issue | Year 2020 Volume: 10 Issue: 1 |
All articles published by EJT are licensed under the Creative Commons Attribution 4.0 International License. This permits anyone to copy, redistribute, remix, transmit and adapt the work provided the original work and source is appropriately cited.