Research Article
BibTex RIS Cite
Year 2021, Volume: 11 Issue: 2, 217 - 221, 30.12.2021
https://doi.org/10.36222/ejt.971029

Abstract

Project Number

1018

References

  • Queheillalt, Douglas T., Yasushi Katsumura, Haydn NG Wadley, "Synthesis of stochastic open cell Ni-based foams", Scripta Materialia 50.3 (2004): 313-317.
  • Kılıç M., “Toz metalurjisi ile Üretilen NiTi Alaşımına Al'un Etkisi”. Bitlis Eren Üniversitesi Fen Bilimleri Dergisi. 2021; 10(1): 256-267.
  • V. Koç, V. V. Çay, "Investigation of Wear Behavior of Ti6AL4V/B4C Composites Produced by Powder Metallurgy", European Journal of Technique (EJT) 10.2 (2020): 444-453.
  • M. F. Ashby, A. Evans, N. A. Fleck, L. J. Gibson, J. W. Hutchinson, H. N. G. Wadley: “Metal Foams: A Design Guide”, Butterworth Heinemann, Boston, USA (2000)
  • J. Banhart: “Manufacture, characterization and application of cellular metals and metal foams”, Progress in Materials Science 46 (2001), pp. 559-562
  • B. Jiang, N. Q. Zhao, C. S. Shi, J. J. Li: “Processing of open-cell aluminum foams with tailored porous morphology”, Scripta Materialia 53 (2005), pp. 781-785
  • D. Curran, “Metal Foams”, Cambridge University Press, Cambridge, UK, 2001
  • Mour M, Das D, Winkler T, Hoenig E, Mielke G, Morlock MM, Schilling AF., “Advances in Porous Biomaterials for Dental and Orthopedic Applications”, Materials, 2010; 3(5):2947-2974.
  • D. C. Dunand, “Processing of Titanium Foams”, Advanced Engineering Materials, 2004; 6(6), pp. 369-376.
  • V. Karageorgiou, D. Kaplan, “Porosity of 3D biomaterial scaffolds and osteogenesis”, Biomaterials, Volume 26, Issue 27, 2005, pp 5474-5491,
  • M. A. Lopez-Heredia, J. Sohier, C. Gaillard, S. Quillard, M. Dorget, P. Layrolle, “Rapid prototyped porous titanium coated with calcium phosphate as a scaffold for bone tissue engineering”, Biomaterials, Volume 29, Issue 17, 2008, pp 2608-2615,
  • G. E. Ryan, A. S. Pandit, D. P. Apatsidis, “Porous titanium scaffolds fabricated using a rapid prototyping and powder metallurgy technique”, Biomaterials, Volume 29, Issue 27, 2008, pp 3625-3635,
  • V. K. Balla, S. Bodhak, S. Bose, A. Bandyopadhyay, “Porous tantalum structures for bone implants: Fabrication, mechanical and in vitro biological properties”, Acta Biomaterialia, Volume 6, Issue 8, 2010, pp 3349-3359,
  • T.F. Hong, Z.X. Guo, R. Yang, “Fabrication of porous titanium scaffold materials by a fugitive filler method”. Journal of Materials Science: Materials in Medicine, 19, 3489 (2008).
  • N. Tuncer, G. Arslan, “Designing compressive properties of titanium foams”. Journal of Materials Science, 44, pp 1477–1484 (2009).
  • J. P. Li, S. H. Li, C. A. V. Blitterswijk, K. de Groot, “A novel porous Ti6Al4V: Characterization and cell attachment”, Journal of Biomedical Materials Research, 73A(2), 2005, pp 223-233,
  • C.E Wen, M Mabuchi, Y Yamada, K Shimojima, Y Chino, T Asahina, “Processing of biocompatible porous Ti and Mg”, Scripta Materialia, Volume 45, Issue 10, 2001, Pages 1147-1153,
  • M. S. Aly, “Effect of pore size on the tensile behavior of open-cell Ti foams: Experimental results”, Materials Letters, Volume 64, Issue 8, 2010, Pages 935-937,
  • L. D. Zardiackas, D. E. Parsell, L. D. Dillon, D. W. Mitchell, L. A. Nunnery, R. Poggie, “Structure, metallurgy, and mechanical properties of a porous tantalum foam”, Journal of Biomedical Materials Research, Volume58, Issue2, 2001, pp 180-187,
  • A. J. T. Clemow, A. M. Weinstein, J. J. Klawitter, J. Koeneman, J. Anderson, “Interface mechanics of porous titanium implants”, Journal of Biomedical Materials Research, Volume15, Issue1, 1981, pp 73-82,
  • Y. Er, E. Ünsaldı, “The Production of Nickel-Chromium-Molybdenum Alloy with Open Pore Structure as an Implant and the Investigation of Its Biocompatibility in Vivo”, Advances in Materials Science and Engineering, vol. 2013, Article ID 568479, 7 pages
  • Y. Yamada, K. Shimojima, Y. Sakaguchi, “Effects of heat treatment on compressive properties of AZ91 Mg and SG91A Al foams with open-cell structure,” Materials Science and Engineering A, 2000, vol. 280, no. 1, pp. 225–228,
  • C. E. Wen, M. Mabuchi, Y. Yamada, K. Shimojima, Y. Chino, and T. Asahina, “Processing of biocompatible porous Ti and Mg,” Scripta Materialia, vol. 45, no. 10, pp. 1147–1153, 2001.
  • E. Tsuruga, H. Takita, H. Itoh, Y. Wakisaka, Y. Kuboki, “Pore size of porous hydroxyapatite as the cell-substratum controls BMP-induced osteogenesis”, Journal of Biochemistry, vol. 121, no. 2, pp. 317–324, 1997.
  • Kilic, M., Kirik, I., Okumuş, M., “Microstructure examination of functionally graded NiTi/NiAl/Ni3Al intermetallic compound produced by self-propagating high-temperature synthesis”, Kovove Materialy. 55. 97-106. 10.4149/km-2017-2-97.
  • H. Nishikawa, N. Maruyama, “Mechanical testing of metallic biomaterials”, Metals for Biomedical Devices (Second Edition), 2019, pp 189-211,
  • A. Glied, J. Mundiya, “Implant Material Sciences”, Dental Clinics of North America, Volume 65, Issue 1, 2021, pp 81-88,
  • N. H. Mat-Baharin, M. Razali, S. Mohd-Said, J. Syarif, A. Muchtar, “Influence of alloying elements on cellular response and in-vitro corrosion behavior of titanium-molybdenum-chromium alloys for implant materials”, Journal of Prosthodontic Research, Volume 64, Issue 4, 2020, pp 490-497,
  • S. Terpilowska, “Chapter 11 - Pro- and antioxidant activity of chromium(III), iron(III), molybdenum(III), or nickel(II)”, Toxicology, Academic Press, 2021, pp 99-106,
  • D. Mehrotra, S. Kumar, P. Mehrotra, R. Khanna, V. Khanna, D. Eggbeer, P. Evans, “Patient specific total temporomandibular joint reconstruction: A review of biomaterial, designs, fabrication and outcomes”, Journal of Oral Biology and Craniofacial Research, Volume 11, Issue 2, 2021, pp 334-343,
  • P. A. B. Kuroda, M. A. R. Buzalaf, C. R. Grandini, “Effect of molybdenum on structure, microstructure and mechanical properties of biomedical Ti-20Zr-Mo alloys”, Materials Science and Engineering: C, Volume 67, 2016, pp 511-515,
  • N. Ranjan, “A Bibliometric Analysis and Visualisation of Research Trends in Health Issues of Nickel-Implants”, Turkish Journal of Computer and Mathematics Education, Vol. 12 No. 2 (2021), pp 109-114,
  • G. Thind, “A Bibliometric Analysis and Visualisation of Research Trends in Toxicity of Nickel-implants”, Turkish Journal of Computer and Mathematics Education, Vol.12 No.2 (2021), pp 75 -80,
  • V. V. Çay, S. Ozan, "Superalloys and Application Areas." Doğu Anadolu Bölgesi Araştırmaları, (2005).
  • S. Pattnaik, D. B. Karunakar, P.K. Jha, “Developments in investment casting process—A review”, Journal of Materials Processing Technology, Volume 212, Issue 11, 2012, pp 2332-2348,
  • J. Banhart, J. Baumeister, “Production Methods for Metallic Foams”, MRS Proceedings, (1998). 521, 121.
  • B. Y. Li, L. J. Rong, Y. Y. Li, and V. E. Gjunter, “Synthesis of porous Ni-Ti shape-memory alloys by self-propagating high temperature synthesis: reaction mechanism and anisotropy in pore structure”, Acta Materialia, vol. 48, no. 15, pp. 3895–3904, 2000.
  • M. W. Christopher, M. S. Richard, J. P. F. Garry, and J. D. Alison, “Dental materials,” Dental, vol. 982, p. 10, 2006.

An Investigation on Mechanical and Microstructural Properties of Porous Nickel-Based Alloy Fabricated by Investment Casting as an Implant Materials

Year 2021, Volume: 11 Issue: 2, 217 - 221, 30.12.2021
https://doi.org/10.36222/ejt.971029

Abstract

In this study, Nickel-Chrome-Molybdenum alloy is manufactured using investment casting method with centrifugal casting device from a polyurethane foam model in a regular and open-pore form, as a hard tissue implant. The samples produced have 10, 20, and 30 (±3) pores per inch and 0.0008, 0.0017, and 0.0027 g/mm3 densities, respectively.
Young’s modulus, hardness and mechanical behaviors of the samples were investigated by SEM, EDS and compressive test.
As a result, it is seen that the pore size and the pore wire diameter of the samples could be controlled thus compression strength and young modulus. In this way it was understood that an implant material could be produced with similar mechanical properties to the human bone.

Supporting Institution

The Scientific Research Foundation, Firat University

Project Number

1018

Thanks

The authors acknowledge the Scientific Research Foundation, Firat University (FUBAP—Project no. 1018) for their financial support.

References

  • Queheillalt, Douglas T., Yasushi Katsumura, Haydn NG Wadley, "Synthesis of stochastic open cell Ni-based foams", Scripta Materialia 50.3 (2004): 313-317.
  • Kılıç M., “Toz metalurjisi ile Üretilen NiTi Alaşımına Al'un Etkisi”. Bitlis Eren Üniversitesi Fen Bilimleri Dergisi. 2021; 10(1): 256-267.
  • V. Koç, V. V. Çay, "Investigation of Wear Behavior of Ti6AL4V/B4C Composites Produced by Powder Metallurgy", European Journal of Technique (EJT) 10.2 (2020): 444-453.
  • M. F. Ashby, A. Evans, N. A. Fleck, L. J. Gibson, J. W. Hutchinson, H. N. G. Wadley: “Metal Foams: A Design Guide”, Butterworth Heinemann, Boston, USA (2000)
  • J. Banhart: “Manufacture, characterization and application of cellular metals and metal foams”, Progress in Materials Science 46 (2001), pp. 559-562
  • B. Jiang, N. Q. Zhao, C. S. Shi, J. J. Li: “Processing of open-cell aluminum foams with tailored porous morphology”, Scripta Materialia 53 (2005), pp. 781-785
  • D. Curran, “Metal Foams”, Cambridge University Press, Cambridge, UK, 2001
  • Mour M, Das D, Winkler T, Hoenig E, Mielke G, Morlock MM, Schilling AF., “Advances in Porous Biomaterials for Dental and Orthopedic Applications”, Materials, 2010; 3(5):2947-2974.
  • D. C. Dunand, “Processing of Titanium Foams”, Advanced Engineering Materials, 2004; 6(6), pp. 369-376.
  • V. Karageorgiou, D. Kaplan, “Porosity of 3D biomaterial scaffolds and osteogenesis”, Biomaterials, Volume 26, Issue 27, 2005, pp 5474-5491,
  • M. A. Lopez-Heredia, J. Sohier, C. Gaillard, S. Quillard, M. Dorget, P. Layrolle, “Rapid prototyped porous titanium coated with calcium phosphate as a scaffold for bone tissue engineering”, Biomaterials, Volume 29, Issue 17, 2008, pp 2608-2615,
  • G. E. Ryan, A. S. Pandit, D. P. Apatsidis, “Porous titanium scaffolds fabricated using a rapid prototyping and powder metallurgy technique”, Biomaterials, Volume 29, Issue 27, 2008, pp 3625-3635,
  • V. K. Balla, S. Bodhak, S. Bose, A. Bandyopadhyay, “Porous tantalum structures for bone implants: Fabrication, mechanical and in vitro biological properties”, Acta Biomaterialia, Volume 6, Issue 8, 2010, pp 3349-3359,
  • T.F. Hong, Z.X. Guo, R. Yang, “Fabrication of porous titanium scaffold materials by a fugitive filler method”. Journal of Materials Science: Materials in Medicine, 19, 3489 (2008).
  • N. Tuncer, G. Arslan, “Designing compressive properties of titanium foams”. Journal of Materials Science, 44, pp 1477–1484 (2009).
  • J. P. Li, S. H. Li, C. A. V. Blitterswijk, K. de Groot, “A novel porous Ti6Al4V: Characterization and cell attachment”, Journal of Biomedical Materials Research, 73A(2), 2005, pp 223-233,
  • C.E Wen, M Mabuchi, Y Yamada, K Shimojima, Y Chino, T Asahina, “Processing of biocompatible porous Ti and Mg”, Scripta Materialia, Volume 45, Issue 10, 2001, Pages 1147-1153,
  • M. S. Aly, “Effect of pore size on the tensile behavior of open-cell Ti foams: Experimental results”, Materials Letters, Volume 64, Issue 8, 2010, Pages 935-937,
  • L. D. Zardiackas, D. E. Parsell, L. D. Dillon, D. W. Mitchell, L. A. Nunnery, R. Poggie, “Structure, metallurgy, and mechanical properties of a porous tantalum foam”, Journal of Biomedical Materials Research, Volume58, Issue2, 2001, pp 180-187,
  • A. J. T. Clemow, A. M. Weinstein, J. J. Klawitter, J. Koeneman, J. Anderson, “Interface mechanics of porous titanium implants”, Journal of Biomedical Materials Research, Volume15, Issue1, 1981, pp 73-82,
  • Y. Er, E. Ünsaldı, “The Production of Nickel-Chromium-Molybdenum Alloy with Open Pore Structure as an Implant and the Investigation of Its Biocompatibility in Vivo”, Advances in Materials Science and Engineering, vol. 2013, Article ID 568479, 7 pages
  • Y. Yamada, K. Shimojima, Y. Sakaguchi, “Effects of heat treatment on compressive properties of AZ91 Mg and SG91A Al foams with open-cell structure,” Materials Science and Engineering A, 2000, vol. 280, no. 1, pp. 225–228,
  • C. E. Wen, M. Mabuchi, Y. Yamada, K. Shimojima, Y. Chino, and T. Asahina, “Processing of biocompatible porous Ti and Mg,” Scripta Materialia, vol. 45, no. 10, pp. 1147–1153, 2001.
  • E. Tsuruga, H. Takita, H. Itoh, Y. Wakisaka, Y. Kuboki, “Pore size of porous hydroxyapatite as the cell-substratum controls BMP-induced osteogenesis”, Journal of Biochemistry, vol. 121, no. 2, pp. 317–324, 1997.
  • Kilic, M., Kirik, I., Okumuş, M., “Microstructure examination of functionally graded NiTi/NiAl/Ni3Al intermetallic compound produced by self-propagating high-temperature synthesis”, Kovove Materialy. 55. 97-106. 10.4149/km-2017-2-97.
  • H. Nishikawa, N. Maruyama, “Mechanical testing of metallic biomaterials”, Metals for Biomedical Devices (Second Edition), 2019, pp 189-211,
  • A. Glied, J. Mundiya, “Implant Material Sciences”, Dental Clinics of North America, Volume 65, Issue 1, 2021, pp 81-88,
  • N. H. Mat-Baharin, M. Razali, S. Mohd-Said, J. Syarif, A. Muchtar, “Influence of alloying elements on cellular response and in-vitro corrosion behavior of titanium-molybdenum-chromium alloys for implant materials”, Journal of Prosthodontic Research, Volume 64, Issue 4, 2020, pp 490-497,
  • S. Terpilowska, “Chapter 11 - Pro- and antioxidant activity of chromium(III), iron(III), molybdenum(III), or nickel(II)”, Toxicology, Academic Press, 2021, pp 99-106,
  • D. Mehrotra, S. Kumar, P. Mehrotra, R. Khanna, V. Khanna, D. Eggbeer, P. Evans, “Patient specific total temporomandibular joint reconstruction: A review of biomaterial, designs, fabrication and outcomes”, Journal of Oral Biology and Craniofacial Research, Volume 11, Issue 2, 2021, pp 334-343,
  • P. A. B. Kuroda, M. A. R. Buzalaf, C. R. Grandini, “Effect of molybdenum on structure, microstructure and mechanical properties of biomedical Ti-20Zr-Mo alloys”, Materials Science and Engineering: C, Volume 67, 2016, pp 511-515,
  • N. Ranjan, “A Bibliometric Analysis and Visualisation of Research Trends in Health Issues of Nickel-Implants”, Turkish Journal of Computer and Mathematics Education, Vol. 12 No. 2 (2021), pp 109-114,
  • G. Thind, “A Bibliometric Analysis and Visualisation of Research Trends in Toxicity of Nickel-implants”, Turkish Journal of Computer and Mathematics Education, Vol.12 No.2 (2021), pp 75 -80,
  • V. V. Çay, S. Ozan, "Superalloys and Application Areas." Doğu Anadolu Bölgesi Araştırmaları, (2005).
  • S. Pattnaik, D. B. Karunakar, P.K. Jha, “Developments in investment casting process—A review”, Journal of Materials Processing Technology, Volume 212, Issue 11, 2012, pp 2332-2348,
  • J. Banhart, J. Baumeister, “Production Methods for Metallic Foams”, MRS Proceedings, (1998). 521, 121.
  • B. Y. Li, L. J. Rong, Y. Y. Li, and V. E. Gjunter, “Synthesis of porous Ni-Ti shape-memory alloys by self-propagating high temperature synthesis: reaction mechanism and anisotropy in pore structure”, Acta Materialia, vol. 48, no. 15, pp. 3895–3904, 2000.
  • M. W. Christopher, M. S. Richard, J. P. F. Garry, and J. D. Alison, “Dental materials,” Dental, vol. 982, p. 10, 2006.
There are 38 citations in total.

Details

Primary Language English
Subjects Material Production Technologies
Journal Section Research Article
Authors

Yusuf Er 0000-0001-5500-9481

Project Number 1018
Publication Date December 30, 2021
Published in Issue Year 2021 Volume: 11 Issue: 2

Cite

APA Er, Y. (2021). An Investigation on Mechanical and Microstructural Properties of Porous Nickel-Based Alloy Fabricated by Investment Casting as an Implant Materials. European Journal of Technique (EJT), 11(2), 217-221. https://doi.org/10.36222/ejt.971029

All articles published by EJT are licensed under the Creative Commons Attribution 4.0 International License. This permits anyone to copy, redistribute, remix, transmit and adapt the work provided the original work and source is appropriately cited.Creative Commons Lisansı