Research Article
BibTex RIS Cite

İlköğretim Matematik Öğretmen Adaylarının Lineer Cebirde Sergiledikleri Temsil Biçimlerine İlişkin Bir Nitel Yöntem Araştırması

Year 2025, Volume: 6 Issue: 2, 65 - 87, 25.08.2025
https://doi.org/10.69918/ejte.1642958

Abstract

Bu çalışma, öğretmen adaylarının bazı lineer cebir kavramlarını cebirsel ve geometrik olarak nasıl temsil ettiklerini incelemek ve bu temsil biçimlerine ilişkin yanılgıları ortaya koymak amacıyla gerçekleştirilmiştir. Araştırmanın katılımcılarını, 2021-2022 öğretim yılında İç Anadolu bölgesinde bir üniversitenin ilköğretim matematik öğretmenliği bölümüne kayıtlı olan 3. sınıf öğrencileri arasından belirlenen 6 öğretmen adayı oluşturmaktadır. Araştırmada veriler; öğretmen adaylarının cebirsel ve geometrik temsil biçimlerini belirlemek için araştırmacılar tarafından geliştirilen, “Görüşme Formu” aracılığı ile toplanmıştır. Verilerin analizinde, nitel analiz metodlarından sürekli karşılaştırmalı analiz metodundan yararlanılmıştır. Araştırma sonucunda, öğretmen adaylarının, cebirsel temsili anlamada geometrik temsile göre daha başarılı olduğu tespit edilmiştir. Öğretmen adaylarının germe kavramının geometrik temsiline göstermede diğer kavramlara göre daha çok zorlandıkları belirlenmiştir. Öğretmen adaylarının geometrik olarak temsil etmede yanılmasının, “lineer birleşim” teriminin “birleştirme”, “lineer bağımlı” teriminin “bağlı olma” ve “lineer bağımsız” teriminin “bağlı olmama” eylemini çağrıştırmış olmasından kaynaklanmış olabileceği düşünülmektedir. Öğretmen adaylarının, lineer cebiri öğrenmede yaşadığı güçlüklerin bir diğer kaynağı; nokta, vektör, doğru, lineer toplam, vektörel toplam vb. kavramlara ilişkin yanılgılarının olmasıdır. Farklı temsil biçimleri temelinde kavramları öğrenmenin gerekliliğine ve lineer cebir ve geometri alanıyla ilgili bazı kavramlara ilişkin hataların ve yanılgıların giderilmesine işaret etmesi bağlamında, bu çalışmanın matematik eğitimine katkı sağlayacağı düşünülmektedir.

References

  • Açıkyıldız, G. (2019). Vektör uzaylarının öğretimine yönelik olarak öğrenme ortamının tasarlanması, uygulanması ve değerlendirilmesi (Tez No. 566041) [Doktora tezi, Trabzon Üniversitesi- Trabzon]. Yükseköğretim Kurulu Başkanlığı Tez Merkezi.
  • Açıkyıldız, G., & Kösa, T. (2022). Vektör uzaylarının öğretimi için tasarlanan öğrenme ortamına ilişkin görüşlerin incelenmesi. Abant İzzet Baysal Üniversitesi Eğitim Fakültesi Dergisi, 22(3), 957-983. https://doi.org/10.17240/aibuefd.2022..-971969
  • Ayaz, Ü. B. (2016). Ortaokul öğrencilerinin dörtgenlere ilişkin kavram imajları (Tez No. 456555) [Yüksek lisans tezi, Necmettin Erbakan Üniversitesi-Konya]. Yükseköğretim Kurulu Başkanlığı Tez Merkezi.
  • Aydın, S. (2007). Bazı özel öğretim yöntemlerinin lineer cebir öğrenimine etkileri. Elektronik Sosyal Bilimler Dergisi, 6(19), 214-223.
  • Aytekin, C., & Kiymaz, Y. (2019). Teaching linear algebra supported by geogebra visualization environment. Acta Didactica Napocensia, 12(2), 75-96. https://doi.org/10.24193/adn.12.2.7
  • Ayyıldız, A. (2020). Geogebra destekli öğretimin ilköğretim matematik öğretmen adaylarının akademik performanslarına ve motivasyonlarına etkisi: Diziler örneği. Necmettin Erbakan Üniversitesi Ereğli Eğitim Fakültesi Dergisi, 2(2), 152-174. https://doi.org/10.51119/ereegf.2020.3
  • Beltrán-Meneu, M. J., Murillo-Arcila, M., & Albarracín, L. (2017). Emphasizing visualization and physical applications in the study of eigenvectors and eigenvalues. Teaching Mathematics and its Applications: An International Journal of the IMA, 36(3), 123-135. https://doi.org/10.1093/teamat/hrw018
  • Bingölbali, E. (2016). Kavram tanımı ve kavram imajı. E. Bingölbali, S. Arslan & İ.Ö. Zembat (Eds.), Matematik eğitiminde teoriler (1. baskı, ss. 136-148) içinde. Pegem Akademi Yayıncılık.
  • Büyüköztürk, Ş., Çakmak, E. K., Akgün, Ö. E., Karadeniz, Ş., & Demirel, F. (2016). Bilimsel araştırma yöntemleri (2. baskı). Pegem Akademi.
  • Caglayan, G. (2015). Making sense of eigenvalue–eigenvector relationships: math majors’ linear algebra–geometry connections in a dynamic environment. The Journal of Mathematical Behavior, 40, 131-153. https://doi.org/10.1016/j.jmathb.2015.08.003
  • Caglayan, G. (2019). Is it a subspace or not? Making sense of subspaces of vector spaces in a technology-assisted learning environment. ZDM Mathematics Education, 51, 1215–1237. https://doi.org/10.1007/s11858-019-01101-4
  • Cárcamo, A., Fortuny, J., & Fuentealba, C. (2018). The emergent models in linear algebra: an example with spanning set and span. Teaching Mathematics and its Applications: An International Journal of the IMA, 37(4), 202-217. https://doi.org/10.1093/teamat/hrx015
  • Carlson, D., Johnson, C.R., Lay, D.C., & Porter, A.D. (1993). The linear algebra curriculum study group recommendations for the first course in linear algebra. The College Mathematics Journal, 24(1), 41-46. https://doi.org/10.1080/07468342.1993.11973504
  • Çenberci, S., & Horzum, T. (2023). Matematik öğretmeni adaylarının etnomatematik farkındalıklarının incelenmesi. Ahmet Keleşoğlu Eğitim Fakültesi Dergisi, 5(3), 713-732. https://doi.org/10.38151/akef.2023.80
  • Çevik, Y., & Cihangir, A. (2020). Tam sayıların modellenmesine ilişkin durum çalışması. Necmettin Erbakan Üniversitesi Ereğli Eğitim Fakültesi Dergisi, 2(2), 136-151. https://doi.org/10.51119/ereegf.2020.2
  • Dağ, E. (2022). Spinoza’nın hafıza teorisi: imgesel çağrışım, ‘gelişkin bellek’ ve ‘kişisel aynılık’ problemi. Bozok Üniversitesi İlahiyat Fakültesi Dergisi 22, 229-258. https://doi.org/10.51553/bozifder.1184491
  • Dogan-Dunlap, H. (2010). Linear algebra students’ modes of reasoning: Geometric representations. Linear Algebra and its Applications, 432(8), 2141-2159. https://doi.org/10.1016/j.laa.2009.08.037
  • Dogan, H. (2018). Differing instructional modalities and cognitive structures: Linear algebra. Linear Algebra and Its Applications, 542, 464-483. https://doi.org/10.1016/j.laa.2017.07.007
  • Dogan, H. (2019). Some aspects of linear independence schemas. ZDM Mathematics Education, 51, 1169–1181. https://doi.org/10.1007/s11858-019-01082-4
  • Dorier, J. L., Robert, A., Robinet, J., & Rogalsiu, M. (2000). The obstacle of formalism in linear algebra: A variety of studies from 1987 until 1995. In J.L. Dorier (Ed.), On the teaching of linear algebra (pp 85–124). Springer. https://doi.org/10.1007/0-306-47224-4_2
  • Dorier, J.L., & Sierpinska, A. (2001). Research into the teaching and learning of linear algebra. In D. Holton, M. Artigue, U. Kirchgräber, J. Hillel, M. Niss & A. Schoenfeld (Eds.), The teaching and learning of mathematics at university level (pp. 255-273). Springer. https://doi.org/10.1007/0-306-47231-7
  • Duran, A. A. (2024). Liselere geçiş sistemi matematik sorularının bilişsel istem düzeyleri bağlamında değerlendirilmesi. Necmettin Erbakan Üniversitesi Ereğli Eğitim Fakültesi Dergisi, 6(1), 65-85. https://doi.org/10.51119/ereegf.2024.72
  • Ertekin, E., Solak, S., & Yazici, E. (2010). The effects of formalism on teacher trainees’ algebraic and geometric interpretation of the notions of linear dependency/independency. International Journal of Mathematical Education in Science and Technology, 41(8), 1015-1035. https://doi.org/10.1080/0020739X.2010.500689
  • Gerami, S., Khiu, E., Mesa, V., & Judson, T. (2024). Conceptions of span in linear algebra: from textbook examples to student responses. Educational Studies in Mathematics, 116(1), 67-89. https://doi.org/10.1007/s10649-024-10306-8
  • Gol Tabaghi, S. (2014). How dragging changes students’ awareness: Developing meanings for eigenvector and eigenvalue. Canadian Journal of Science, Mathematics and Technology Education, 14, 223-237. https://doi.org/10.1080/14926156.2014.935528
  • Haddad, M., (1999). Difficulties in the learning and teaching of linear algebra: a personal experience [Unpublished Doctoral Dissertation]. Concordia University.
  • Hannah, J., Stewart, S., & Thomas, M. (2013). Emphasizing language and visualization in teaching linear algebra. International Journal of Mathematical Education in Science and Technology, 44(4), 475–489. https://doi.org/10.1080/0020739X.2012.756545
  • Hannah, J., Stewart, S., & Thomas, M. (2016). Developing conceptual understanding and definitional clarity in linear algebra through the three worlds of mathematical thinking. Teaching Mathematics and Its Applications: An International Journal of the IMA, 35(4), 216–235. https://doi.org/10.1093/teamat/hrw001
  • Harel, G. (1989). Learning and teaching linear algebra: Difficulties and an alternative approach to visualizing concepts and processes. Focus on Learning Problems in Mathematics, 11, 139–148.
  • Harel, G. (2000). Principles of learning and teaching of linear algebra: Old and new observations. In J.L. Dorier (Ed.), On the teaching of linear algebra (pp. 177-189). Kluwer Academic Publishers.
  • Harel, G. (2020). The DNR system as a conceptual framework for curriculum development and instruction. In R. Lesh, E. Hamilton & J. Kaput (Eds.), Foundations for the future in mathematics education (pp. 263-280). Routledge.
  • Havelková, V. (2013, 30-31 October). GeoGebra in teaching linear algebra. Proceedings of 12th European Conference on E-Learning, Sophia Antipolis, France.
  • Hillel, J. (2000). Modes of description and the problem of representation in linear algebra. In J. L. Dorier (Ed.), On the teaching of linear algebra (pp. 191-207). Kluwer Academic Publishers.
  • İlhan, A., & Aslaner, R. (2022). Matematik öğretmeni adaylarının geometri başarılarının cinsiyet, sınıf ve üniversite değişkenlerine göre incelenmesi. Ahmet Keleşoğlu Eğitim Fakültesi Dergisi, 4(1), 128-145. https://doi.org/10.38151/akef.2022.8
  • Kobal, D. (2018). Linear algebra—a companion of advancement in mathematical comprehension. In S., Stewart, C., Andrews-Larson, A., Berman & M., Zandieh (Eds.), Challenges and strategies in teaching linear algebra. Springer. https://doi.org/10.1007/978-3-319-66811-6_13
  • Kilpatrick, J.(2001). The strands of mathematical proficiency. In J. Kilpatrick, J. Swafford & B. Findell (Eds.), Adding it up: Helping children learn mathematics (pp. 115-156). National Academy Press.
  • Love, B., Hodge, A., Corritore, C., & Ernst, D. C. (2015). Inquiry-based learning and the flipped classroom model. Primus, 25(8), 745-762. https://doi.org/10.1080/10511970.2015.1046005
  • Medina, E. (2000). Student understanding of span, linear independence, and basis in an elementary linear algebra class [Unpublished doctoral dissertation]. University of Northern.
  • Miles M., & Huberman, M. (1994). An expanded sourcebook qualitative data analysis. Sage Publications.
  • Milli Eğitim Bakanlığı. (2013). Ortaöğretim matematik 9, 10, 11 ve 12. sınıflar dersi öğretim programı. T.C. Milli Eğitim Bakanlığı.
  • National Council of Teachers of Mathematics. (2000). Principals and standards for school mathematics. NCTM Publications.
  • National Research Council. (2001). Adding it up: Helping children learn mathematics. National Academy Press.
  • Öner, A. (2013). Bilgisayar destekli öğretimin ilköğretim matematik öğretmen adaylarının trigonometrik fonksiyonların periyotlarıyla ilgili kavram imajlarına etkisi (Tez No. 347502) [Yüksek lisans tezi, Necmettin Erbakan Üniversitesi-Konya]. Yükseköğretim Kurulu Başkanlığı Tez Merkezi.
  • Parraguez, M., & Oktaç, A. (2010). Construction of the vector space concept from the viewpoint of APOS theory. Linear Algebra and Its Applications, 432(8), 2112-2124. https://doi.org/10.1016/j.laa.2009.06.034
  • Patton, M. Q. (2018). Nitel araştırma ve değerlendirme yöntemleri. (M. Bütün & S. B. Demir, Çev.). Pegem Akademi.
  • Rensaa, R. J., Hogstad, N. M., & Monaghan, J. (2021). Themes within lecturers’ views on the teaching of linear algebra. International Journal of Mathematical Education in Science and Technology, 52(1), 107-123. https://doi.org/10.1080/0020739X.2019.1668976
  • Sierpinska, A. (2000). On some aspects of students’ thinking in linear algebra. In J. L. Dorier (Ed.), On the teaching of linear algebra (pp. 209-246). Kluwer Academic Publishers.
  • Stewart, S., & Thomas, M. O. (2007). Embodied, symbolic and formal thinking in linear algebra. International Journal of Mathematical Education in Science and Technology, 38(7), 927-937. https://doi.org/10.1080/00207390701573335
  • Stewart, S., & Thomas, M.O. (2010). Student learning of basis, span and linear independence in linear algebra. International Journal of Mathematical Education in Science and Technology, 41(2), 173-188. https://doi.org/10.1080/00207390903399620
  • Stewart, S., Andrews-Larson, C., & Zandieh, M. (2019). Linear algebra teaching and learning: themes from recent research and evolving research priorities. ZDM, 51, 1017-1030. https://doi.org/10.1007/s11858-019-01104-1
  • Stewart, S., Epstein, J., & Troup, J. (2019). Leading students towards the formal world of mathematical thinking: a mathematician’s reflections on teaching eigentheory. International Journal of Mathematical Education in Science and Technology, 50(7), 1011-1023. https://doi.org/10.1080/0020739X.2019.1657598
  • Tall, D., & Vinner, S. (1981). Concept image and concept definition in mathematics with particular reference to limits and continuity. Educational Studies in Mathematics, 12(2), 151-169. https://doi.org/10.1007/BF00305619
  • Turgut, M. (2018). Synergies among students’thinking modes and representation types in linear algebra: employing statistical implicative analysis. International Journal of Mathematical Education in Science and
  • Technology, 49(8), 1181-1202. https://doi.org/10.1080/0020739X.2018.1443221 Uhlig, F. (2003). A new unified, balanced, and conceptual approach to teaching linear algebra. Linear Algebra and its Applications, 361, 147-159. https://doi.org/10.1016/S0024-3795(02)00319-1
  • Vinner, S. (1983). Concept definition, concept image and the notion of function. International Journal of Mathematical Education in Science and Technology, 14(3), 293-305.
  • Vinner, S. (2002). The role of definitions in the teaching and learning of mathematics. In D. Tall (Ed.), Advanced mathematical thinking (pp. 65-81). Springer. https://doi.org/10.1007/0-306-47203-1_5
  • Wawro, M., Rasmussen, C., Zandieh, M., Sweeney, G.F., & Larson, C. (2012). An inquiry-oriented approach to span and linear independence: The case of the magic carpet ride sequence. Primus, 22(8), 577-599. https://doi.org/10.1080/10511970.2012.667516

A Qualitative Method Research on the Representations of Preservice Teachers in Linear Algebra

Year 2025, Volume: 6 Issue: 2, 65 - 87, 25.08.2025
https://doi.org/10.69918/ejte.1642958

Abstract

This study was conducted to determine the algebraic and geometric representations of some linear algebra concepts exhibited by pre-service teachers and to reveal the misconceptions about these representations. The study participants consisted of 6 pre-service teachers selected among the 3rd-grade students enrolled in the department of elementary mathematics teaching at a university in the Central Anatolia region in the 2021-2022 academic year. The data were collected through the "Form" developed by the researchers. As a result of the study, it was determined that the associations of pre-service teachers were mostly correct or partially correct in the context of algebraic representation and mostly partially correct or incorrect in the context of geometric representation. It was concluded that pre-service teachers with high and medium-level linear algebra performance were more successful in showing the algebraic representation of the concepts than the geometric representation. A source of pre-service teachers' difficulties in learning linear algebra is their misconceptions about points, vectors, lines, linear sum, and vector sum etc. This study is thought to contribute to mathematics education as it points out the necessity of eliminating errors and misconceptions about some concepts related to linear algebra and geometry.

References

  • Açıkyıldız, G. (2019). Vektör uzaylarının öğretimine yönelik olarak öğrenme ortamının tasarlanması, uygulanması ve değerlendirilmesi (Tez No. 566041) [Doktora tezi, Trabzon Üniversitesi- Trabzon]. Yükseköğretim Kurulu Başkanlığı Tez Merkezi.
  • Açıkyıldız, G., & Kösa, T. (2022). Vektör uzaylarının öğretimi için tasarlanan öğrenme ortamına ilişkin görüşlerin incelenmesi. Abant İzzet Baysal Üniversitesi Eğitim Fakültesi Dergisi, 22(3), 957-983. https://doi.org/10.17240/aibuefd.2022..-971969
  • Ayaz, Ü. B. (2016). Ortaokul öğrencilerinin dörtgenlere ilişkin kavram imajları (Tez No. 456555) [Yüksek lisans tezi, Necmettin Erbakan Üniversitesi-Konya]. Yükseköğretim Kurulu Başkanlığı Tez Merkezi.
  • Aydın, S. (2007). Bazı özel öğretim yöntemlerinin lineer cebir öğrenimine etkileri. Elektronik Sosyal Bilimler Dergisi, 6(19), 214-223.
  • Aytekin, C., & Kiymaz, Y. (2019). Teaching linear algebra supported by geogebra visualization environment. Acta Didactica Napocensia, 12(2), 75-96. https://doi.org/10.24193/adn.12.2.7
  • Ayyıldız, A. (2020). Geogebra destekli öğretimin ilköğretim matematik öğretmen adaylarının akademik performanslarına ve motivasyonlarına etkisi: Diziler örneği. Necmettin Erbakan Üniversitesi Ereğli Eğitim Fakültesi Dergisi, 2(2), 152-174. https://doi.org/10.51119/ereegf.2020.3
  • Beltrán-Meneu, M. J., Murillo-Arcila, M., & Albarracín, L. (2017). Emphasizing visualization and physical applications in the study of eigenvectors and eigenvalues. Teaching Mathematics and its Applications: An International Journal of the IMA, 36(3), 123-135. https://doi.org/10.1093/teamat/hrw018
  • Bingölbali, E. (2016). Kavram tanımı ve kavram imajı. E. Bingölbali, S. Arslan & İ.Ö. Zembat (Eds.), Matematik eğitiminde teoriler (1. baskı, ss. 136-148) içinde. Pegem Akademi Yayıncılık.
  • Büyüköztürk, Ş., Çakmak, E. K., Akgün, Ö. E., Karadeniz, Ş., & Demirel, F. (2016). Bilimsel araştırma yöntemleri (2. baskı). Pegem Akademi.
  • Caglayan, G. (2015). Making sense of eigenvalue–eigenvector relationships: math majors’ linear algebra–geometry connections in a dynamic environment. The Journal of Mathematical Behavior, 40, 131-153. https://doi.org/10.1016/j.jmathb.2015.08.003
  • Caglayan, G. (2019). Is it a subspace or not? Making sense of subspaces of vector spaces in a technology-assisted learning environment. ZDM Mathematics Education, 51, 1215–1237. https://doi.org/10.1007/s11858-019-01101-4
  • Cárcamo, A., Fortuny, J., & Fuentealba, C. (2018). The emergent models in linear algebra: an example with spanning set and span. Teaching Mathematics and its Applications: An International Journal of the IMA, 37(4), 202-217. https://doi.org/10.1093/teamat/hrx015
  • Carlson, D., Johnson, C.R., Lay, D.C., & Porter, A.D. (1993). The linear algebra curriculum study group recommendations for the first course in linear algebra. The College Mathematics Journal, 24(1), 41-46. https://doi.org/10.1080/07468342.1993.11973504
  • Çenberci, S., & Horzum, T. (2023). Matematik öğretmeni adaylarının etnomatematik farkındalıklarının incelenmesi. Ahmet Keleşoğlu Eğitim Fakültesi Dergisi, 5(3), 713-732. https://doi.org/10.38151/akef.2023.80
  • Çevik, Y., & Cihangir, A. (2020). Tam sayıların modellenmesine ilişkin durum çalışması. Necmettin Erbakan Üniversitesi Ereğli Eğitim Fakültesi Dergisi, 2(2), 136-151. https://doi.org/10.51119/ereegf.2020.2
  • Dağ, E. (2022). Spinoza’nın hafıza teorisi: imgesel çağrışım, ‘gelişkin bellek’ ve ‘kişisel aynılık’ problemi. Bozok Üniversitesi İlahiyat Fakültesi Dergisi 22, 229-258. https://doi.org/10.51553/bozifder.1184491
  • Dogan-Dunlap, H. (2010). Linear algebra students’ modes of reasoning: Geometric representations. Linear Algebra and its Applications, 432(8), 2141-2159. https://doi.org/10.1016/j.laa.2009.08.037
  • Dogan, H. (2018). Differing instructional modalities and cognitive structures: Linear algebra. Linear Algebra and Its Applications, 542, 464-483. https://doi.org/10.1016/j.laa.2017.07.007
  • Dogan, H. (2019). Some aspects of linear independence schemas. ZDM Mathematics Education, 51, 1169–1181. https://doi.org/10.1007/s11858-019-01082-4
  • Dorier, J. L., Robert, A., Robinet, J., & Rogalsiu, M. (2000). The obstacle of formalism in linear algebra: A variety of studies from 1987 until 1995. In J.L. Dorier (Ed.), On the teaching of linear algebra (pp 85–124). Springer. https://doi.org/10.1007/0-306-47224-4_2
  • Dorier, J.L., & Sierpinska, A. (2001). Research into the teaching and learning of linear algebra. In D. Holton, M. Artigue, U. Kirchgräber, J. Hillel, M. Niss & A. Schoenfeld (Eds.), The teaching and learning of mathematics at university level (pp. 255-273). Springer. https://doi.org/10.1007/0-306-47231-7
  • Duran, A. A. (2024). Liselere geçiş sistemi matematik sorularının bilişsel istem düzeyleri bağlamında değerlendirilmesi. Necmettin Erbakan Üniversitesi Ereğli Eğitim Fakültesi Dergisi, 6(1), 65-85. https://doi.org/10.51119/ereegf.2024.72
  • Ertekin, E., Solak, S., & Yazici, E. (2010). The effects of formalism on teacher trainees’ algebraic and geometric interpretation of the notions of linear dependency/independency. International Journal of Mathematical Education in Science and Technology, 41(8), 1015-1035. https://doi.org/10.1080/0020739X.2010.500689
  • Gerami, S., Khiu, E., Mesa, V., & Judson, T. (2024). Conceptions of span in linear algebra: from textbook examples to student responses. Educational Studies in Mathematics, 116(1), 67-89. https://doi.org/10.1007/s10649-024-10306-8
  • Gol Tabaghi, S. (2014). How dragging changes students’ awareness: Developing meanings for eigenvector and eigenvalue. Canadian Journal of Science, Mathematics and Technology Education, 14, 223-237. https://doi.org/10.1080/14926156.2014.935528
  • Haddad, M., (1999). Difficulties in the learning and teaching of linear algebra: a personal experience [Unpublished Doctoral Dissertation]. Concordia University.
  • Hannah, J., Stewart, S., & Thomas, M. (2013). Emphasizing language and visualization in teaching linear algebra. International Journal of Mathematical Education in Science and Technology, 44(4), 475–489. https://doi.org/10.1080/0020739X.2012.756545
  • Hannah, J., Stewart, S., & Thomas, M. (2016). Developing conceptual understanding and definitional clarity in linear algebra through the three worlds of mathematical thinking. Teaching Mathematics and Its Applications: An International Journal of the IMA, 35(4), 216–235. https://doi.org/10.1093/teamat/hrw001
  • Harel, G. (1989). Learning and teaching linear algebra: Difficulties and an alternative approach to visualizing concepts and processes. Focus on Learning Problems in Mathematics, 11, 139–148.
  • Harel, G. (2000). Principles of learning and teaching of linear algebra: Old and new observations. In J.L. Dorier (Ed.), On the teaching of linear algebra (pp. 177-189). Kluwer Academic Publishers.
  • Harel, G. (2020). The DNR system as a conceptual framework for curriculum development and instruction. In R. Lesh, E. Hamilton & J. Kaput (Eds.), Foundations for the future in mathematics education (pp. 263-280). Routledge.
  • Havelková, V. (2013, 30-31 October). GeoGebra in teaching linear algebra. Proceedings of 12th European Conference on E-Learning, Sophia Antipolis, France.
  • Hillel, J. (2000). Modes of description and the problem of representation in linear algebra. In J. L. Dorier (Ed.), On the teaching of linear algebra (pp. 191-207). Kluwer Academic Publishers.
  • İlhan, A., & Aslaner, R. (2022). Matematik öğretmeni adaylarının geometri başarılarının cinsiyet, sınıf ve üniversite değişkenlerine göre incelenmesi. Ahmet Keleşoğlu Eğitim Fakültesi Dergisi, 4(1), 128-145. https://doi.org/10.38151/akef.2022.8
  • Kobal, D. (2018). Linear algebra—a companion of advancement in mathematical comprehension. In S., Stewart, C., Andrews-Larson, A., Berman & M., Zandieh (Eds.), Challenges and strategies in teaching linear algebra. Springer. https://doi.org/10.1007/978-3-319-66811-6_13
  • Kilpatrick, J.(2001). The strands of mathematical proficiency. In J. Kilpatrick, J. Swafford & B. Findell (Eds.), Adding it up: Helping children learn mathematics (pp. 115-156). National Academy Press.
  • Love, B., Hodge, A., Corritore, C., & Ernst, D. C. (2015). Inquiry-based learning and the flipped classroom model. Primus, 25(8), 745-762. https://doi.org/10.1080/10511970.2015.1046005
  • Medina, E. (2000). Student understanding of span, linear independence, and basis in an elementary linear algebra class [Unpublished doctoral dissertation]. University of Northern.
  • Miles M., & Huberman, M. (1994). An expanded sourcebook qualitative data analysis. Sage Publications.
  • Milli Eğitim Bakanlığı. (2013). Ortaöğretim matematik 9, 10, 11 ve 12. sınıflar dersi öğretim programı. T.C. Milli Eğitim Bakanlığı.
  • National Council of Teachers of Mathematics. (2000). Principals and standards for school mathematics. NCTM Publications.
  • National Research Council. (2001). Adding it up: Helping children learn mathematics. National Academy Press.
  • Öner, A. (2013). Bilgisayar destekli öğretimin ilköğretim matematik öğretmen adaylarının trigonometrik fonksiyonların periyotlarıyla ilgili kavram imajlarına etkisi (Tez No. 347502) [Yüksek lisans tezi, Necmettin Erbakan Üniversitesi-Konya]. Yükseköğretim Kurulu Başkanlığı Tez Merkezi.
  • Parraguez, M., & Oktaç, A. (2010). Construction of the vector space concept from the viewpoint of APOS theory. Linear Algebra and Its Applications, 432(8), 2112-2124. https://doi.org/10.1016/j.laa.2009.06.034
  • Patton, M. Q. (2018). Nitel araştırma ve değerlendirme yöntemleri. (M. Bütün & S. B. Demir, Çev.). Pegem Akademi.
  • Rensaa, R. J., Hogstad, N. M., & Monaghan, J. (2021). Themes within lecturers’ views on the teaching of linear algebra. International Journal of Mathematical Education in Science and Technology, 52(1), 107-123. https://doi.org/10.1080/0020739X.2019.1668976
  • Sierpinska, A. (2000). On some aspects of students’ thinking in linear algebra. In J. L. Dorier (Ed.), On the teaching of linear algebra (pp. 209-246). Kluwer Academic Publishers.
  • Stewart, S., & Thomas, M. O. (2007). Embodied, symbolic and formal thinking in linear algebra. International Journal of Mathematical Education in Science and Technology, 38(7), 927-937. https://doi.org/10.1080/00207390701573335
  • Stewart, S., & Thomas, M.O. (2010). Student learning of basis, span and linear independence in linear algebra. International Journal of Mathematical Education in Science and Technology, 41(2), 173-188. https://doi.org/10.1080/00207390903399620
  • Stewart, S., Andrews-Larson, C., & Zandieh, M. (2019). Linear algebra teaching and learning: themes from recent research and evolving research priorities. ZDM, 51, 1017-1030. https://doi.org/10.1007/s11858-019-01104-1
  • Stewart, S., Epstein, J., & Troup, J. (2019). Leading students towards the formal world of mathematical thinking: a mathematician’s reflections on teaching eigentheory. International Journal of Mathematical Education in Science and Technology, 50(7), 1011-1023. https://doi.org/10.1080/0020739X.2019.1657598
  • Tall, D., & Vinner, S. (1981). Concept image and concept definition in mathematics with particular reference to limits and continuity. Educational Studies in Mathematics, 12(2), 151-169. https://doi.org/10.1007/BF00305619
  • Turgut, M. (2018). Synergies among students’thinking modes and representation types in linear algebra: employing statistical implicative analysis. International Journal of Mathematical Education in Science and
  • Technology, 49(8), 1181-1202. https://doi.org/10.1080/0020739X.2018.1443221 Uhlig, F. (2003). A new unified, balanced, and conceptual approach to teaching linear algebra. Linear Algebra and its Applications, 361, 147-159. https://doi.org/10.1016/S0024-3795(02)00319-1
  • Vinner, S. (1983). Concept definition, concept image and the notion of function. International Journal of Mathematical Education in Science and Technology, 14(3), 293-305.
  • Vinner, S. (2002). The role of definitions in the teaching and learning of mathematics. In D. Tall (Ed.), Advanced mathematical thinking (pp. 65-81). Springer. https://doi.org/10.1007/0-306-47203-1_5
  • Wawro, M., Rasmussen, C., Zandieh, M., Sweeney, G.F., & Larson, C. (2012). An inquiry-oriented approach to span and linear independence: The case of the magic carpet ride sequence. Primus, 22(8), 577-599. https://doi.org/10.1080/10511970.2012.667516
There are 57 citations in total.

Details

Primary Language English
Subjects Mathematics Education
Journal Section Research Articles
Authors

Atiye Ayyıldız Altınbaş 0000-0001-7411-9838

Erhan Ertekin 0000-0002-6466-8996

Süleyman Solak 0000-0003-4085-277X

Early Pub Date August 9, 2025
Publication Date August 25, 2025
Submission Date February 19, 2025
Acceptance Date May 3, 2025
Published in Issue Year 2025 Volume: 6 Issue: 2

Cite

APA Ayyıldız Altınbaş, A., Ertekin, E., & Solak, S. (2025). A Qualitative Method Research on the Representations of Preservice Teachers in Linear Algebra. Eurasian Journal of Teacher Education, 6(2), 65-87. https://doi.org/10.69918/ejte.1642958

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 Unported License .