Research Article
BibTex RIS Cite

Kripto Para Birimlerinin Volatilite Yapılarının Karşılaştırmalı Analizi

Year 2021, , 33 - 57, 31.12.2021
https://doi.org/10.26650/ekoist.2021.36.984568

Abstract

2008 küresel finans krizi ile birlikte ortaya çıkan kripto para birimi, geleneksel para sisteminin yerini almak üzere geliştirilen alternatif bir değişim aracı olmuştur. Kripto para birimleri hızlı ve güvenli işlem yapabilmesi, aracı kurumları ortadan kaldırması ve düşük maliyetli olmasından dolayı giderek popüler hale gelmiştir. Ancak kripto para piyasasındaki sert dalgalanmalardan ötürü oluşan yüksek risk-getiri oranı nedeniyle literatürde kripto paraların getirilerinin yanında risklerinin de dikkate alınmasının önemi vurgulanmaktadır. Bu çalışmada pozitif ve negatif şokların kripto para birimlerinin getiri oranlarının volatilitesi üzerindeki etkilerinin araştırılması amaçlanmıştır. Bu doğrultuda piyasa değeri yüksek olan BTC, ETH, XRP, ADA, LTC, BCH, XLM, LINK, TRX ve DOGE kripto para birimleri seçilerek getiri serileri oluşturulmuştur. Bu getiri serilerinin volatiliteleri simetrik ve asimetrik koşullu değişen varyans modelleri kullanılarak analiz edilmiştir. Veri seti dönemi her bir kripto para birimi için değişmekle birlikte en geniş veri seti 01.01.2017-16.01.2021 dönemini kapsamaktadır. Elde edilen bulgular BTC, ADA, LINK getiri serilerinde meydana gelen negatif şokların pozitif şoklara göre volatilite üzerinde daha çok etkisi olduğunu göstermiştir. Diğer taraftan ETH, XRP, LTC, BCH, XLM, TRX, DOGE getiri serilerinde ise pozitif şokların volatilite üzerinde daha büyük bir etkiye sahip olduğu sonucuna ulaşılmıştır. Sonuç olarak bu çalışmada kullanılan veriler için getiri serilerinin volatilitelerinin modellenmesinde asimetrik koşullu değişen varyans modellerinin, simetrik koşullu değişen varyans modellerine göre daha anlamlı sonuçlar verdiğini göstermiştir.

References

  • Bollerslev, T. (1986). Generalized Autoregressıve Conditional. Journal of Econometrics 31, 307-327. https://doi.org/10.1016/0304-4076(86)90063-1
  • Bollerslev, T., Chou, R. Y., ve Kroner, K. F. (1992). ARCH modeling in finance: A review of the theory and empirical evidence. Journal of econometrics, 52(1-2), 5-59.
  • Chu, J., Chan, S., Nadarajah, S., ve Osterrieder, J. (2017). GARCH modelling of cryptocurrencies. Journal of Risk and Financial Management, 10(4), 17. https://doi.org/10.3390/jrfm10040017
  • Çelik, İ., ve Kahyaoğlu, S. B. (ed.). (2021). Finansal Zaman Serisi Analizi Finansçılar İçin Temel Yaklaşımlar. Gazi Kitabevi, Ankara.
  • Çil, N. (2018). Finansal Ekonometri. Der Yayınları, İstanbul.
  • Dai, H. N., Zheng, Z., ve Zhang, Y. (2019). Blockchain for Internet of Things: A survey. IEEE Internet of Things Journal, 6(5), 8076-8094. DOI: 10.1109/JIOT.2019.2920987
  • Demirel, B., Bozdağ, E. G., ve İnci, A. G. (2008). Döviz Kurlarındaki Dalgalanmaların Gelen Turist Sayısına Etkisi; Türkiye Örneği. DEU Ulusal İktisat Kongresi. İzmir.
  • Ding, Z., Granger, C. W., ve Engle, R. F. (1993). A Long Memory Property Of Stock Market Returns and A New Model. Journal Of Empirical Finance, 1(1), 83-106. https://doi.org/10.1016/0927-5398(93)90006-D
  • Dyhrberg, A. H. (2016). Bitcoin, Gold and The Dollar–A GARCH Volatility Analysis. Finance Research Letters, 16, 85-92. https://doi.org/10.1016/j.frl.2015.10.008
  • Enders, W. (2014). Applıed Econometrıc Tıme Serıes. (Fourth edition) Wiley, University of Alabama.
  • Engle, R. F., Lilien, D. M., ve Robins, R. P. (1987). Estimating Time Varying Risk Premia in The Term Structure: The ARCH-M Model. Econometrica: Journal of The Econometric Society, 391-407. https://doi.org/10.2307/1913242
  • Engle, R. F., ve Bollerslev, T. (1986). Modelling The Persistence of Conditional Variances. Econometric Reviews, 5(1), 1-50. https://doi.org/10.1080/07474938608800095
  • Engle, R.F., (1982). "Autoregressive Conditional Heteroscedasticity with Estimates of the Variance of United Kingdom Inflation," Econometrica Journal of The Econometric Society, vol. 50(4), pp. 987-1007. https://doi.org/10.2307/1912773
  • Ertuğrul, M. (2019). Kripto Paralarin Volatilite Dinamiklerinin İncelenmesi: GARCH Modelleri Üzerine Bir Uygulama. Yönetim ve Ekonomi Araştırmaları Dergisi, 17(4), 59-71. https://doi.org/10.11611/yead.555713
  • Ghalanos, A. (2020). Introduction To The Rugarch Package. (Version 1.3-1). Manuscript, Accessed, 11. http://cran. r-project. org/web/packages/rugarch.
  • Glosten, L. R., Jagannathan, R., ve Runkle, D. E. (1993). On The Relation Between The Expected Value And The Volatility of The Nominal Excess Return on Stocks. The Journal of Finance, 48(5), 1779-1801. https://doi.org/10.1111/j.1540-6261.1993.tb05128.x
  • Güriş, S., ve Çağlayan, E. (2013) Ekonometri Temel Kavramlar, Der Yayınları, İstanbul
  • Hamilton, J. (1994). Time Series Analysis, Princeton University Press: Princeton, New Jersey.
  • Harvey, A., ve Sucarrat, G. (2014). EGARCH Models With Fat Tails, Skewness and Leverage. Computational Statistics ve Data Analysis, 76, 320-338. https://doi.org/10.1016/j.csda.2013.09.022
  • Katsiampa, P. (2017). A comparison of GARCH models. Economics Letters, 158, 3-6. https://doi.org/10.1016/j.econlet.2017.06.023
  • Kayral, İ. E. (2020). En Yüksek Piyasa Değerine Sahip Üç Kripto Paranın Volatilitelerinin Tahmin Edilmesi. Finansal Araştırmalar ve Çalışmalar Dergisi, 12(22), 152-168.
  • Lee, Gary G. J. and Engle, Robert F., (1993) A Permanent and Transitory Component Model of Stock Return Volatility. Available at SSRN: https://ssrn.com/abstract=5848 (Erişim Tarihi: 20.04.2021). Available at SSRN: https://ssrn.com/abstract=5848
  • Liu, W., ve Morley, B. (2009). Volatility forecasting in the hang seng index using the GARCH approach. Asia-Pacific Financial Markets, 16(1), 51-63. https://doi.org/10.1007/s10690-009-9086-4
  • Mandelbrot, B. B. (1963). The variation of certain speculative prices. In Fractals and Scaling in Finance (pp. 371-418). Springer, New York, NY. https://doi.org/10.1007/978-1-4757-2763-0_14
  • Mapa, ve Dennis, S. (2004). A Forecast Comparison of Financial Volatility Models: GARCH(1,1) Is Not Enough.The Philippine Statistician, Vol. 53, 1-10. https://mpra.ub.uni-muenchen.de/id/eprint/21028
  • Markowitz, H. (1952). Potfolio Selection. The Journal of Finance Vol. 7 No.1, 77-91.
  • Merton, R. C. (1980). On Estimating The Expected Return on The Market: An Exploratory İnvestigation. Journal of Financial Economics, 8(4), 323-361. https://doi.org/10.1016/0304-405X(80)90007-0
  • Nakamoto, S. (2008). Bitcoin: Apeer-To-Peer Elecktronic Cash System. https://bitcoin.org/bitcoin.pdf (Erişim Tarihi: 20.04.2021).
  • Narayan, P. K., ve Narayan, S. (2007). Modelling Oil Price Volatility. Energy Policy 35, 6549–6553. https://doi.org/10.1016/j.enpol.2007.07.020
  • Nelson, D. B. (1991). Conditional heteroskedasticity in asset returns: A new approach. Econometrica: Journal of the Econometric Society, 347-370. https://doi.org/10.2307/2938260
  • Nelson, D. B., ve Cao, C. Q. (1992). Inequality constraints in the univariate GARCH model. Journal of Business ve Economic Statistics, 10(2), 229-235.
  • Poon, S. H. (2005). A practical Guide to Forecasting Financial Market Volatility. Jhon Wiley ve Sons. England.
  • Söylemez, Y. (2020). Genelleştirilmiş Otoregresif Koşullu Değişen Varyans Modelleri ile Bitcoin Volatilitesinin Analizi. İşletme Araştırmaları Dergisi, 12(2), 1322-1333
  • Tsay, R. S. (2010). Analysis of Financial Time Series. 3rd Edition, John Wiley and Sons., Hoboken.
  • Ünal, G., ve Uluyol, Ç. (2020). Blok Zinciri Teknolojisi. Bilişim Teknolojileri Dergisi, Cilt:13, Sayı: 2, 167-175. DOI: 10.17671/gazibtd.516990
  • https://tr.investing.com/ (Erişim Tarihi: 20.02.2021).

Comparative Analysis of the Volatility Structure of Cryptocurrencies

Year 2021, , 33 - 57, 31.12.2021
https://doi.org/10.26650/ekoist.2021.36.984568

Abstract

Cryptocurrency emerged as an alternative medium of exchange developed after the 2008 global financial crisis to replace the traditional money system. Cryptocurrencies have become increasingly popular because of their fast and secure transactions, elimination of intermediaries, and low cost. However, due to the high risk–return ratio arising from sharp fluctuations in the cryptomoney market, studies have emphasized that the risks of cryptocurrencies should be considered in addition to their returns. This study investigates the effects of positive and negative shocks on the volatility of the rates of return on cryptocurrencies. In this direction, a return series was created by choosing BTC, ETH, XRP, ADA, LTC, BCH, XLM, LINK, TRX, and DOGE cryptocurrencies with high market values. The volatility of these return series was analyzed using symmetric and asymmetric conditional heteroskedasticity models. Although the data set period varies for each cryptocurrency, the largest dataset covers the period from January 1, 2017, to January 16, 2021. The findings show that negative shocks in BTC, ADA, and LINK return series have more effect on volatility than positive shocks. Alternatively, it was concluded that positive shocks have a greater effect on volatility in ETH, XRP, LTC, BCH, XLM, TRX, DOGE return series. Therefore, for the data used in this study, it has been shown that the asymmetric conditional heteroskedasticity models give more meaningful results than the symmetric conditional heteroskedasticity models in modeling the volatility of the return series.

References

  • Bollerslev, T. (1986). Generalized Autoregressıve Conditional. Journal of Econometrics 31, 307-327. https://doi.org/10.1016/0304-4076(86)90063-1
  • Bollerslev, T., Chou, R. Y., ve Kroner, K. F. (1992). ARCH modeling in finance: A review of the theory and empirical evidence. Journal of econometrics, 52(1-2), 5-59.
  • Chu, J., Chan, S., Nadarajah, S., ve Osterrieder, J. (2017). GARCH modelling of cryptocurrencies. Journal of Risk and Financial Management, 10(4), 17. https://doi.org/10.3390/jrfm10040017
  • Çelik, İ., ve Kahyaoğlu, S. B. (ed.). (2021). Finansal Zaman Serisi Analizi Finansçılar İçin Temel Yaklaşımlar. Gazi Kitabevi, Ankara.
  • Çil, N. (2018). Finansal Ekonometri. Der Yayınları, İstanbul.
  • Dai, H. N., Zheng, Z., ve Zhang, Y. (2019). Blockchain for Internet of Things: A survey. IEEE Internet of Things Journal, 6(5), 8076-8094. DOI: 10.1109/JIOT.2019.2920987
  • Demirel, B., Bozdağ, E. G., ve İnci, A. G. (2008). Döviz Kurlarındaki Dalgalanmaların Gelen Turist Sayısına Etkisi; Türkiye Örneği. DEU Ulusal İktisat Kongresi. İzmir.
  • Ding, Z., Granger, C. W., ve Engle, R. F. (1993). A Long Memory Property Of Stock Market Returns and A New Model. Journal Of Empirical Finance, 1(1), 83-106. https://doi.org/10.1016/0927-5398(93)90006-D
  • Dyhrberg, A. H. (2016). Bitcoin, Gold and The Dollar–A GARCH Volatility Analysis. Finance Research Letters, 16, 85-92. https://doi.org/10.1016/j.frl.2015.10.008
  • Enders, W. (2014). Applıed Econometrıc Tıme Serıes. (Fourth edition) Wiley, University of Alabama.
  • Engle, R. F., Lilien, D. M., ve Robins, R. P. (1987). Estimating Time Varying Risk Premia in The Term Structure: The ARCH-M Model. Econometrica: Journal of The Econometric Society, 391-407. https://doi.org/10.2307/1913242
  • Engle, R. F., ve Bollerslev, T. (1986). Modelling The Persistence of Conditional Variances. Econometric Reviews, 5(1), 1-50. https://doi.org/10.1080/07474938608800095
  • Engle, R.F., (1982). "Autoregressive Conditional Heteroscedasticity with Estimates of the Variance of United Kingdom Inflation," Econometrica Journal of The Econometric Society, vol. 50(4), pp. 987-1007. https://doi.org/10.2307/1912773
  • Ertuğrul, M. (2019). Kripto Paralarin Volatilite Dinamiklerinin İncelenmesi: GARCH Modelleri Üzerine Bir Uygulama. Yönetim ve Ekonomi Araştırmaları Dergisi, 17(4), 59-71. https://doi.org/10.11611/yead.555713
  • Ghalanos, A. (2020). Introduction To The Rugarch Package. (Version 1.3-1). Manuscript, Accessed, 11. http://cran. r-project. org/web/packages/rugarch.
  • Glosten, L. R., Jagannathan, R., ve Runkle, D. E. (1993). On The Relation Between The Expected Value And The Volatility of The Nominal Excess Return on Stocks. The Journal of Finance, 48(5), 1779-1801. https://doi.org/10.1111/j.1540-6261.1993.tb05128.x
  • Güriş, S., ve Çağlayan, E. (2013) Ekonometri Temel Kavramlar, Der Yayınları, İstanbul
  • Hamilton, J. (1994). Time Series Analysis, Princeton University Press: Princeton, New Jersey.
  • Harvey, A., ve Sucarrat, G. (2014). EGARCH Models With Fat Tails, Skewness and Leverage. Computational Statistics ve Data Analysis, 76, 320-338. https://doi.org/10.1016/j.csda.2013.09.022
  • Katsiampa, P. (2017). A comparison of GARCH models. Economics Letters, 158, 3-6. https://doi.org/10.1016/j.econlet.2017.06.023
  • Kayral, İ. E. (2020). En Yüksek Piyasa Değerine Sahip Üç Kripto Paranın Volatilitelerinin Tahmin Edilmesi. Finansal Araştırmalar ve Çalışmalar Dergisi, 12(22), 152-168.
  • Lee, Gary G. J. and Engle, Robert F., (1993) A Permanent and Transitory Component Model of Stock Return Volatility. Available at SSRN: https://ssrn.com/abstract=5848 (Erişim Tarihi: 20.04.2021). Available at SSRN: https://ssrn.com/abstract=5848
  • Liu, W., ve Morley, B. (2009). Volatility forecasting in the hang seng index using the GARCH approach. Asia-Pacific Financial Markets, 16(1), 51-63. https://doi.org/10.1007/s10690-009-9086-4
  • Mandelbrot, B. B. (1963). The variation of certain speculative prices. In Fractals and Scaling in Finance (pp. 371-418). Springer, New York, NY. https://doi.org/10.1007/978-1-4757-2763-0_14
  • Mapa, ve Dennis, S. (2004). A Forecast Comparison of Financial Volatility Models: GARCH(1,1) Is Not Enough.The Philippine Statistician, Vol. 53, 1-10. https://mpra.ub.uni-muenchen.de/id/eprint/21028
  • Markowitz, H. (1952). Potfolio Selection. The Journal of Finance Vol. 7 No.1, 77-91.
  • Merton, R. C. (1980). On Estimating The Expected Return on The Market: An Exploratory İnvestigation. Journal of Financial Economics, 8(4), 323-361. https://doi.org/10.1016/0304-405X(80)90007-0
  • Nakamoto, S. (2008). Bitcoin: Apeer-To-Peer Elecktronic Cash System. https://bitcoin.org/bitcoin.pdf (Erişim Tarihi: 20.04.2021).
  • Narayan, P. K., ve Narayan, S. (2007). Modelling Oil Price Volatility. Energy Policy 35, 6549–6553. https://doi.org/10.1016/j.enpol.2007.07.020
  • Nelson, D. B. (1991). Conditional heteroskedasticity in asset returns: A new approach. Econometrica: Journal of the Econometric Society, 347-370. https://doi.org/10.2307/2938260
  • Nelson, D. B., ve Cao, C. Q. (1992). Inequality constraints in the univariate GARCH model. Journal of Business ve Economic Statistics, 10(2), 229-235.
  • Poon, S. H. (2005). A practical Guide to Forecasting Financial Market Volatility. Jhon Wiley ve Sons. England.
  • Söylemez, Y. (2020). Genelleştirilmiş Otoregresif Koşullu Değişen Varyans Modelleri ile Bitcoin Volatilitesinin Analizi. İşletme Araştırmaları Dergisi, 12(2), 1322-1333
  • Tsay, R. S. (2010). Analysis of Financial Time Series. 3rd Edition, John Wiley and Sons., Hoboken.
  • Ünal, G., ve Uluyol, Ç. (2020). Blok Zinciri Teknolojisi. Bilişim Teknolojileri Dergisi, Cilt:13, Sayı: 2, 167-175. DOI: 10.17671/gazibtd.516990
  • https://tr.investing.com/ (Erişim Tarihi: 20.02.2021).
There are 36 citations in total.

Details

Primary Language Turkish
Journal Section Articles
Authors

Fatih Kazova 0000-0002-6028-1823

Ayça Büyükyılmaz Ercan 0000-0001-5392-0722

Publication Date December 31, 2021
Submission Date November 22, 2021
Published in Issue Year 2021

Cite

APA Kazova, F., & Büyükyılmaz Ercan, A. (2021). Kripto Para Birimlerinin Volatilite Yapılarının Karşılaştırmalı Analizi. EKOIST Journal of Econometrics and Statistics(35), 33-57. https://doi.org/10.26650/ekoist.2021.36.984568