Research Article
BibTex RIS Cite

BELİTSEL YAKLAŞIM, İKTİSAT VE Von NEUMANN’IN KAYGILARI

Year 2016, Volume: 5 Issue: 1, 1 - 24, 01.01.2016

Abstract

Modern belitsel yaklaşım David Hilbert tarafından geliştirilmiştir. Hilbert bu yaklaşımı önce geometriye sonra fiziğe uygulamıştır. Hilbert’in belitsel yaklaşım anlayışı zaman içinde everilmiş ve matematik ve fizik alanlarındaki çalışmaları arasında önemli farklılıklar göstermiştir. Hilbert’in matematiğin tutarlılığını göstermek konusundaki derin ilgisi onu “biçimsel belitsel yaklaşıma” dayanmaya yönlendirmiştir. Buna karşılık Hilbert belitsel yaklaşımın fizikte katı bir biçimde uygulanamayacağını görmüş, fizikte ve daha sonra “esnek belitsel yaklaşım” olarak adlandırılan daha gevsek bir yaklaşımı izlemiştir. Hilbert bilim dünyası üzerinde çok büyük bir etki yapmıştı. Onun geliştirdiği belitsel yaklaşım, özellikle Bourbaki’nin çalışmalarının katkısıyla, matematikte yaygın olarak kullanılmış, fizik ve iktisat dahil diğer bilim alanlarındaki araştırmacıların dikkatini çekmiştir. Belitsel yaklaşım iktisada üç değerli bilim insanının çalışmaları yoluyla kazandırılmıştır. Bunlar John von Neumann, Gerard Debreu ve Kenneth J. Arrow’dur. Gerard Debreu, Bourbaki’nin biçimsel belitsel yaklaşımını izleyerek Walras’gil genel denge kuramının biçimselleştirilmesi üzerinde çalışmış ve tutarlılığını göstermiştir. Von Neumann ve Arrow ise aynı yaklaşımı tamamen yeni iki araştırma alanını, sırasıyla oyun kuramı ve toplumsal tercih kuramı, geliştirmek için kullanmışlardır. Belitsel yaklaşımı iktisatta kullanmalarının benzerliğine rağmen, von Neumann, bu yaklaşımın genelde bilim alanında kullanılmasına yönelttiği eleştirileriyle, Debreu ve Arrow’dan farklı konumda görülebilir. Von Neumann, iktisada belirtik biçimde gönderme yapmamakla birlikte, hem fizik alanında yaptığı çalışmalarda hem de yöntem konusundaki görüşlerinde, biçimsel belitsel yaklaşımın “matematiğin estetiğine” kapılma tehlikesine açık olduğu uyarısını yapmıştır. Von Neumann’ın bu konudaki çözümü matematiğin katı biçimselciliği ile bilimsel araştırma alanının gereksinimleri arasında belirtik ve etkin bir ödünleşim kurulmasıdır. Bunun bilim insanı ile matematikçi arasında güçlü bir işbirliği gerektirdiği açıktır.

Thanks

Bu yazının ilk taslağını okuyup görüşlerini ileten derginin seçtiği hakemlere, Fatih Özatay ve Kemal Yıldız’a teşekkür borçluyum. Eleştiri ve önerilerinden çok yararlandım ve metni, elimden geldiğince, bunların ışığında gözden geçirip hataları düzeltmeye ve eksiklikleri tamamlamaya çalıştım. Metnin son biçiminde kalan hatalar ve eksikliklerden doğal olarak sadece ben sorumluyum.

References

  • Aleskerov, F., (1999), Arrovian Aggregation Models, Boston: Kluwer Academic Publishers.
  • Arrow, K. J., (1950), “A Difficulty in the Concept of Social Welfare”, Journal of Political Economy, 58(4), s. 328-346. Arrow, K. J., (1951a), “An Extension of Basic Theorems of Classical Welfare Economics”, J. Newman (Der.) Proceedings of the Second Berkeley Symposium on Mathematical Statistics and Probability, Berkeley: University of California Press, s. 507-532.
  • Arrow, K. J. (1951b [1963]): Social Choice and Individual Values, New York: John Wiley. [Đkinci gözden geçirilmis baskısı aynı isim altında ve aynı yayınevince 1963’de yapılmıstır. Bu kitabın Eric Maskin tarafından yazılan önsöz eklenmis üçüncü baskısı ise 2012’de yayımlanmıstır].
  • Arrow, K. J., (1952 [1964]), “Le Role des Valeurs Boursières Pour la Répartition la Meilleure des Risques”, International Colloquium on Econometrics, Paris: CNRS, s. 1-8. [Đngilizce çevirisi “The role of securities in optimal allocation of risk-bearing”, Review of Economic Studies, 31(2), s. 91-96].
  • Arrow, K. J., (2011), “Gerard Debreu”, Proceedings of the American Philosophical Society, 155(3), s. 319-325.
  • Arrow, K. J. ve G. Debreu, (1954), “Existence of an Equilibrium for a Competitive Economy”, Econometrica, 22(3), s. 265-290. Arrow, K. J. ve F. Hahn, (1971), General Competitive Analysis, San Francisco: Holden Day.
  • Arrow, K. J., A. Sen ve K. Suzumura, (Der.) (2002), Handbook of Social Choice and Welfare, Volume 1, Amsterdam: North Holland.
  • Arrow, K. J., A. Sen ve K. Suzumura (Der.) (2011), Handbook of Social Choice and Welfare, Volume 2, Amsterdam: North Holland.
  • Bourbaki, N., (1950), “The Architecture of Mathematics”, The American Mathematical Monthly, 57(4), s. 221-232.
  • Bulutay, T., (1979), Genel Denge Kuramı, Ankara: A.Ü. Siyasal Bilgiler Fakültesi Yayını.
  • Casti, J. L. ve W. DePauli, (2000 [2004]), Gödel-A Life of Logic, Cambridge, Perseus Books. [Türkçe çevirisi Gödel: Mantığa Adanmıs bir Yasam, Çeviren Ergün Akça, Đstanbul: Kabalcı Yayınevi].
  • Clower, R. W., (1995), “Axiomatics in Economics”, Southern Economic Journal, 62(2), s. 307-319.
  • Corry, L., (1997), “The Origins of Eternal Truth in Modern Mathematics: Hilbert to Bourbaki and Beyond”, Science in Context, 10(2), s. 253-296.
  • Corry, L., (2004), Hilbert and the Axiomatization of Physics 1898-1918, Dordrecht: Kluwer.
  • Corry, L., (2006a), “The Origin of Hilbert’s Axiomatic Method”, J. Renn v.d. (Der.) Theories of Gravitation in the Twilight of Classical Physics, [The Genesis of General Relativity: The Promise of Mathematics and the Dream of a Unified Theory, Vol. 4] New York: Springer, s. 139-236.
  • Corry, L., (2006b), “On the Origins of Hilbert’s Sixth Problem: Physics and the Empiricist Approach to Axiomatization”, Proceedings of the International Congress of Mathematicians, Madrid, Spain, s. 1697-1718
  • Debreu, G., (1951), “The Coefficient of Resource Utilization”, Econometrica, 19(3), s. 273-292.
  • Debreu, G., (1952), “A Social Equilibrium Existence Theorem”, Proceedings of the National Economy of Science, 38(8), s.886-893.
  • Debreu, G., (1959), Theory of Value: An Axiomatic Analysis of Economic Equilibrium, New York: Wiley.
  • Debreu, G., (1983), “Economic Theory in Mathematical Model”, Nobel Foundation, Les Prix Nobel 1983, Stockholm: Almqvist & Wiksell, s. 88-102.
  • [Bu yazı ayrıca American Economic Review, 74(3), June 1984, s. 267- 278’de basılmıstır].
  • Debreu, G., (1986), “Theoretical Models: Mathematical Form and Economic Content”, Econometrica, 54(6), s. 1259- 1270.
  • Debreu, G., (1991), “Mathematization of Economic Theory”, American Economic Review, 81(1), s. 1-7.
  • Dill, R.P, N. Da Costa Jr. ve André A.P. Santos, (2013), “Paraconsistent and Fuzzy Logic Applied to Company Profitability Analysis”, Economics Bulletin, 33 (2), s. 1348-1360.
  • Düppe, T., (2009), The Phenomology of Economics, Doktora Tezi, Erasmus University.
  • Düppe, T., (2010), “Debreu’s Apologies for Mathematical Economics After 1983”, Erasmus Journal of Philosophy and Economics, 3(1), s. 1-32.
  • Düppe, T., (2012a), “Gerard Debreu’s Secrecy: His life in Order and Silence”, History of Political Economy, 44(3), s. 413-449.
  • Düppe, T., (2012b), “Arrow and Debreu De-homogenized”, Journal of History of Economic Thought, 34(4), s. 491-514.
  • Düppe, T., (2015), “Listening the Music of Reason: Nicholas Bourbaki and the Phenomenology of the Mathematical Experience”, PhoenEx, s. 38-56.
  • Düppe, T., ve E. R. Weintraub, (2014), Finding Equilibrium, Princeton ve New York, Princeton University Press.
  • Eves, H., (1997), Foundations and Fundamental Concepts of Mathematics, Third Edition, Minola N.Y.: Dover Publications. (1990 baskısının tıpkı basımı; ilk baskısı 1958).
  • Feiwell, G. R., (1987), “Economic Theory and Mathematical Method: An Interview”, G.R. Feiwell (Der.) Arrow and the Ascent of Modern Economics, London: Macmillan, s. 306-316.
  • Hilbert, D. (1899 [1950]), Grundlagen der Geometrie, Teubner, Leipzig. [10. Baskısının Đngilizce Çevirisi The Foundations of Geometry, Çeviren E.H. Towsend, La Salle, Illinois: The Open Court Publishing Company. 1950].
  • Hintikka, J., (2011), “What is Axiomatic Method?”, Synthese, 183, s. 69-85.
  • Hofstadter, D. R., (1979 [2001]), Gödel, Escher, Bach-An Eternal Golden Braid, New York: Basic Books. [Türkçesi Gödel, Escher, Bach: Bir Gökçe Belik, Çeviren Ergün Akça, Đstanbul: Pinhan Yayınevi].
  • Kornai, J. (1971), Anti-Equilibrium, Amsterdam: North Holland.
  • Mashaal, M., (2006), Bourbaki-A Secret Society of Mathematicians, The American Mathematical Society.
  • Maskin, E. ve A. Sen, (2014), Arrow Impossibility Theorem, New York: Columbia University Press.
  • Mathias, A., (1992), “The Ignorance of Bourbaki”, Mathematical Intelligencer, 14(3), s. 4-13.
  • McKenzie, L. W., (1954), “On Equilibrium in Graham’s Model Of World Trade and Other Competitive Systems”, Econometrica, 22, s. 147-161.
  • Nagel, E., J. R. Newman, (2001 [2007]), Gödel’s Proof, Revised Edition, New York, New York University Press. [Türkçesi Gödel Kanıtlaması, Çeviren Bülent Gözkan, Đstanbul: Boğaziçi Üniversitesi Yayınevi]
  • Priest G., K. Tanaka ve Z. Weber, (2015), “Paraconsistent Logic”, The Stanford Encyclopedia of Philosophy, E. N. Zalta, (Der.) URL=http://plato.stanford.edu/archives/spr2015/entries/logicparaconsistent
  • Redei, M. ve M. Stöltzner, (2006), “Soft Axiomatisation, John von Neumann on Method and von Neumann’s Method in Physical Sciences”, R. Huber ve E. Carson (Der.), Intuition and Axiomatic Method, Dordrecht: Springer, s. 235-250.
  • Robinsan, J., (1962), Essays in the Theory of Economic Growth, London and Basingstoke, Mac-millan.
  • Sen, A., (1970), Collective Choice and Social Welfare, San Francisco: Holden Day.
  • Smith, P., (2013), Introduction to Gödel’s Theorems, Second Edition, Cambridge: Cambridge University Press.
  • Tarski, A., (1941), Introduction to Logic and the Methodology of Deductive Sciences, New York: Oxford University Press. [Bu kitabın oğlu, fizikçi, Jan Tarski tarafından gözden geçirilmis 4. baskısı 1994’de yayımlanmıstır].
  • Thomson, W., (2001), “On Axiomatic Method and its Recent Applications to Game Theory and Resource Allocation”, Social Choice and Welfare, (18), s. 327-386.
  • Usó-Domènench, J.L., J. Nescolarde-Selva, S. Pérez-Gonzaga ve M.J. Sabán, (2015), “Paraconsistent Multi-valued Logic and Coincidentia Oppositerum: Evolution with Complex Numbers”, American Journal of Systems and Software 3(1), s. 1-12. [doi: 10.12691/ajss-3-1-1-1].
  • Velupillai, K.V., (2012), Bourbaki’s Destructive Influence on the Mathematization of Economics, ASSRU, Department of Economica, University of Toranto, Discussion Paper.
  • von Neumann, J., (1928), “Zur Theorie der Gesellschaftsspiele”, Mathematische Annalen, 100, s. 295-332.
  • von Neumann, J., (1932), Mathematische Grundlagen der Quantenmechanik, Berlin: Springer 1932) [İngilizce çevirisi Mathematical Foundations of Quantum Mechanics, Çeviren Robert T. Beyer, Princeton N.J.: Princeton University Press].
  • von Neumann, J., (1937 [1945/6], “Über ein Ökomisches Gleichungssystem und Verallgemeinerung des Browerschen Fixpuntsatzes”, Ergebnisse Eines Mathematischen Kolloqiums, 8(78-83). [İngilizce çevirisi “A model of general economic equilibrium”, Review of Economic Studies, 13, s. 1-9].
  • von Neumann J. ve O. Morgenstern, (1944), Theory of Games and Economic Behavior, Princeton University Press.
  • von Neumann, (1947), “The Mathematician”, Works of the Mind 1(1), s. 180-196.
  • Weintraub, E. R., (1983), “The Existence of Competitive Equilibrium: 1930-1954”, Journal of Economic Literature, 21(1), s. 1-39.
  • Weintraub, E. R., (1985), General Equilibrium Analysis: Studies in Appraisal, New York: Cambridge University Press.
  • Weintraub, E. R., (1998), “Controversy: Axiomatiches Miβverständis”, Economic Journal, 108(November), s. 1837-1847.
  • Weintraub, E. R., (2002), How Economics Became a Mathematical Science?, Durham / London, Duke University Press.
  • Weintraub, E. R., (2011), “Lionel W. McKenzie and the Proof of the Existence of Competitive Equilibrium”, Journal of Economic Perspectives, 25(2), s. 199-215.

THE AXIOMATIC APPROACH, ECONOMICS, AND Von NEUMANN’S CONCERNS

Year 2016, Volume: 5 Issue: 1, 1 - 24, 01.01.2016

Abstract

The modern axiomatic approach was developed by David Hilbert, the prominent German mathematician of the last century, who first applied it to geometry and then to physics. His concept evolved over time, exhibiting considerable differences between its application in mathematics and in physics. Motivated by his deep interest in demonstrating the consistency of mathematics, Hilbert decided on pursuing the so-called “formalist axiomatic approach” for that field. However, realizing that this strict interpretation would not do for use in physics, Hilbert came up with a more relaxed scheme for the latter, which was later termed the “soft axiomatic approach.”
Hilbert had an enormous influence on the scientific community, and his axiomatic approach was adopted widely throughout the mathematics community. This was notably due to Nicholas Bourbaki’s work, which drew the attention of researchers involved in physics and other sciences, including economics. Economists learned of the axiomatic method through the publications of three distinguished scientists: John von Neumann, Gerard Debreu, and Kenneth J. Arrow. Following Bourbaki’s formal axiomatic approach, Debreu aimed to formalize Walrasian general equilibrium theory and proved its consistency. Von Neumann and Arrow, on the other hand, used the same approach to develop completely new fields of research, i.e., game theory and social choice theory, respectively. Despite the similarity of their applications of the axiomatic method to economics, von Neumann distinguishes himself from both Debreu and Arrow with his criticism of the axiomatic approach’s use in science in general. Despite never having explicitly referred to economics, he warned of the vulnerability of the formalist axiomatic approach to capture by what he called the “aesthetics of mathematics.” Von Neumann’s solution was to introduce an explicit and effective trade-off between the strict formalism of the mathematical reasoning and the requirements of the scientific field of research. Obviously, this requires rather strong cooperation between the scientist and the mathematician.

References

  • Aleskerov, F., (1999), Arrovian Aggregation Models, Boston: Kluwer Academic Publishers.
  • Arrow, K. J., (1950), “A Difficulty in the Concept of Social Welfare”, Journal of Political Economy, 58(4), s. 328-346. Arrow, K. J., (1951a), “An Extension of Basic Theorems of Classical Welfare Economics”, J. Newman (Der.) Proceedings of the Second Berkeley Symposium on Mathematical Statistics and Probability, Berkeley: University of California Press, s. 507-532.
  • Arrow, K. J. (1951b [1963]): Social Choice and Individual Values, New York: John Wiley. [Đkinci gözden geçirilmis baskısı aynı isim altında ve aynı yayınevince 1963’de yapılmıstır. Bu kitabın Eric Maskin tarafından yazılan önsöz eklenmis üçüncü baskısı ise 2012’de yayımlanmıstır].
  • Arrow, K. J., (1952 [1964]), “Le Role des Valeurs Boursières Pour la Répartition la Meilleure des Risques”, International Colloquium on Econometrics, Paris: CNRS, s. 1-8. [Đngilizce çevirisi “The role of securities in optimal allocation of risk-bearing”, Review of Economic Studies, 31(2), s. 91-96].
  • Arrow, K. J., (2011), “Gerard Debreu”, Proceedings of the American Philosophical Society, 155(3), s. 319-325.
  • Arrow, K. J. ve G. Debreu, (1954), “Existence of an Equilibrium for a Competitive Economy”, Econometrica, 22(3), s. 265-290. Arrow, K. J. ve F. Hahn, (1971), General Competitive Analysis, San Francisco: Holden Day.
  • Arrow, K. J., A. Sen ve K. Suzumura, (Der.) (2002), Handbook of Social Choice and Welfare, Volume 1, Amsterdam: North Holland.
  • Arrow, K. J., A. Sen ve K. Suzumura (Der.) (2011), Handbook of Social Choice and Welfare, Volume 2, Amsterdam: North Holland.
  • Bourbaki, N., (1950), “The Architecture of Mathematics”, The American Mathematical Monthly, 57(4), s. 221-232.
  • Bulutay, T., (1979), Genel Denge Kuramı, Ankara: A.Ü. Siyasal Bilgiler Fakültesi Yayını.
  • Casti, J. L. ve W. DePauli, (2000 [2004]), Gödel-A Life of Logic, Cambridge, Perseus Books. [Türkçe çevirisi Gödel: Mantığa Adanmıs bir Yasam, Çeviren Ergün Akça, Đstanbul: Kabalcı Yayınevi].
  • Clower, R. W., (1995), “Axiomatics in Economics”, Southern Economic Journal, 62(2), s. 307-319.
  • Corry, L., (1997), “The Origins of Eternal Truth in Modern Mathematics: Hilbert to Bourbaki and Beyond”, Science in Context, 10(2), s. 253-296.
  • Corry, L., (2004), Hilbert and the Axiomatization of Physics 1898-1918, Dordrecht: Kluwer.
  • Corry, L., (2006a), “The Origin of Hilbert’s Axiomatic Method”, J. Renn v.d. (Der.) Theories of Gravitation in the Twilight of Classical Physics, [The Genesis of General Relativity: The Promise of Mathematics and the Dream of a Unified Theory, Vol. 4] New York: Springer, s. 139-236.
  • Corry, L., (2006b), “On the Origins of Hilbert’s Sixth Problem: Physics and the Empiricist Approach to Axiomatization”, Proceedings of the International Congress of Mathematicians, Madrid, Spain, s. 1697-1718
  • Debreu, G., (1951), “The Coefficient of Resource Utilization”, Econometrica, 19(3), s. 273-292.
  • Debreu, G., (1952), “A Social Equilibrium Existence Theorem”, Proceedings of the National Economy of Science, 38(8), s.886-893.
  • Debreu, G., (1959), Theory of Value: An Axiomatic Analysis of Economic Equilibrium, New York: Wiley.
  • Debreu, G., (1983), “Economic Theory in Mathematical Model”, Nobel Foundation, Les Prix Nobel 1983, Stockholm: Almqvist & Wiksell, s. 88-102.
  • [Bu yazı ayrıca American Economic Review, 74(3), June 1984, s. 267- 278’de basılmıstır].
  • Debreu, G., (1986), “Theoretical Models: Mathematical Form and Economic Content”, Econometrica, 54(6), s. 1259- 1270.
  • Debreu, G., (1991), “Mathematization of Economic Theory”, American Economic Review, 81(1), s. 1-7.
  • Dill, R.P, N. Da Costa Jr. ve André A.P. Santos, (2013), “Paraconsistent and Fuzzy Logic Applied to Company Profitability Analysis”, Economics Bulletin, 33 (2), s. 1348-1360.
  • Düppe, T., (2009), The Phenomology of Economics, Doktora Tezi, Erasmus University.
  • Düppe, T., (2010), “Debreu’s Apologies for Mathematical Economics After 1983”, Erasmus Journal of Philosophy and Economics, 3(1), s. 1-32.
  • Düppe, T., (2012a), “Gerard Debreu’s Secrecy: His life in Order and Silence”, History of Political Economy, 44(3), s. 413-449.
  • Düppe, T., (2012b), “Arrow and Debreu De-homogenized”, Journal of History of Economic Thought, 34(4), s. 491-514.
  • Düppe, T., (2015), “Listening the Music of Reason: Nicholas Bourbaki and the Phenomenology of the Mathematical Experience”, PhoenEx, s. 38-56.
  • Düppe, T., ve E. R. Weintraub, (2014), Finding Equilibrium, Princeton ve New York, Princeton University Press.
  • Eves, H., (1997), Foundations and Fundamental Concepts of Mathematics, Third Edition, Minola N.Y.: Dover Publications. (1990 baskısının tıpkı basımı; ilk baskısı 1958).
  • Feiwell, G. R., (1987), “Economic Theory and Mathematical Method: An Interview”, G.R. Feiwell (Der.) Arrow and the Ascent of Modern Economics, London: Macmillan, s. 306-316.
  • Hilbert, D. (1899 [1950]), Grundlagen der Geometrie, Teubner, Leipzig. [10. Baskısının Đngilizce Çevirisi The Foundations of Geometry, Çeviren E.H. Towsend, La Salle, Illinois: The Open Court Publishing Company. 1950].
  • Hintikka, J., (2011), “What is Axiomatic Method?”, Synthese, 183, s. 69-85.
  • Hofstadter, D. R., (1979 [2001]), Gödel, Escher, Bach-An Eternal Golden Braid, New York: Basic Books. [Türkçesi Gödel, Escher, Bach: Bir Gökçe Belik, Çeviren Ergün Akça, Đstanbul: Pinhan Yayınevi].
  • Kornai, J. (1971), Anti-Equilibrium, Amsterdam: North Holland.
  • Mashaal, M., (2006), Bourbaki-A Secret Society of Mathematicians, The American Mathematical Society.
  • Maskin, E. ve A. Sen, (2014), Arrow Impossibility Theorem, New York: Columbia University Press.
  • Mathias, A., (1992), “The Ignorance of Bourbaki”, Mathematical Intelligencer, 14(3), s. 4-13.
  • McKenzie, L. W., (1954), “On Equilibrium in Graham’s Model Of World Trade and Other Competitive Systems”, Econometrica, 22, s. 147-161.
  • Nagel, E., J. R. Newman, (2001 [2007]), Gödel’s Proof, Revised Edition, New York, New York University Press. [Türkçesi Gödel Kanıtlaması, Çeviren Bülent Gözkan, Đstanbul: Boğaziçi Üniversitesi Yayınevi]
  • Priest G., K. Tanaka ve Z. Weber, (2015), “Paraconsistent Logic”, The Stanford Encyclopedia of Philosophy, E. N. Zalta, (Der.) URL=http://plato.stanford.edu/archives/spr2015/entries/logicparaconsistent
  • Redei, M. ve M. Stöltzner, (2006), “Soft Axiomatisation, John von Neumann on Method and von Neumann’s Method in Physical Sciences”, R. Huber ve E. Carson (Der.), Intuition and Axiomatic Method, Dordrecht: Springer, s. 235-250.
  • Robinsan, J., (1962), Essays in the Theory of Economic Growth, London and Basingstoke, Mac-millan.
  • Sen, A., (1970), Collective Choice and Social Welfare, San Francisco: Holden Day.
  • Smith, P., (2013), Introduction to Gödel’s Theorems, Second Edition, Cambridge: Cambridge University Press.
  • Tarski, A., (1941), Introduction to Logic and the Methodology of Deductive Sciences, New York: Oxford University Press. [Bu kitabın oğlu, fizikçi, Jan Tarski tarafından gözden geçirilmis 4. baskısı 1994’de yayımlanmıstır].
  • Thomson, W., (2001), “On Axiomatic Method and its Recent Applications to Game Theory and Resource Allocation”, Social Choice and Welfare, (18), s. 327-386.
  • Usó-Domènench, J.L., J. Nescolarde-Selva, S. Pérez-Gonzaga ve M.J. Sabán, (2015), “Paraconsistent Multi-valued Logic and Coincidentia Oppositerum: Evolution with Complex Numbers”, American Journal of Systems and Software 3(1), s. 1-12. [doi: 10.12691/ajss-3-1-1-1].
  • Velupillai, K.V., (2012), Bourbaki’s Destructive Influence on the Mathematization of Economics, ASSRU, Department of Economica, University of Toranto, Discussion Paper.
  • von Neumann, J., (1928), “Zur Theorie der Gesellschaftsspiele”, Mathematische Annalen, 100, s. 295-332.
  • von Neumann, J., (1932), Mathematische Grundlagen der Quantenmechanik, Berlin: Springer 1932) [İngilizce çevirisi Mathematical Foundations of Quantum Mechanics, Çeviren Robert T. Beyer, Princeton N.J.: Princeton University Press].
  • von Neumann, J., (1937 [1945/6], “Über ein Ökomisches Gleichungssystem und Verallgemeinerung des Browerschen Fixpuntsatzes”, Ergebnisse Eines Mathematischen Kolloqiums, 8(78-83). [İngilizce çevirisi “A model of general economic equilibrium”, Review of Economic Studies, 13, s. 1-9].
  • von Neumann J. ve O. Morgenstern, (1944), Theory of Games and Economic Behavior, Princeton University Press.
  • von Neumann, (1947), “The Mathematician”, Works of the Mind 1(1), s. 180-196.
  • Weintraub, E. R., (1983), “The Existence of Competitive Equilibrium: 1930-1954”, Journal of Economic Literature, 21(1), s. 1-39.
  • Weintraub, E. R., (1985), General Equilibrium Analysis: Studies in Appraisal, New York: Cambridge University Press.
  • Weintraub, E. R., (1998), “Controversy: Axiomatiches Miβverständis”, Economic Journal, 108(November), s. 1837-1847.
  • Weintraub, E. R., (2002), How Economics Became a Mathematical Science?, Durham / London, Duke University Press.
  • Weintraub, E. R., (2011), “Lionel W. McKenzie and the Proof of the Existence of Competitive Equilibrium”, Journal of Economic Perspectives, 25(2), s. 199-215.
There are 60 citations in total.

Details

Primary Language Turkish
Subjects Economics
Journal Section Research Articles
Authors

Hasan Ersel This is me

Publication Date January 1, 2016
Published in Issue Year 2016 Volume: 5 Issue: 1

Cite

APA Ersel, H. (2016). BELİTSEL YAKLAŞIM, İKTİSAT VE Von NEUMANN’IN KAYGILARI. Ekonomi-Tek, 5(1), 1-24.