Review
BibTex RIS Cite

Adaptif Cephelerin Sürdürülebilir Yapı Tasarımındaki Rolü: Teknolojik Yenilikler ve Çevresel Etkiler

Year 2025, Volume: 6 Issue: 2, 109 - 125, 31.12.2025
https://doi.org/10.58317/eksen.1628771

Abstract

Adaptif cephe sistemleri, yapıların çevresel koşullara dinamik olarak uyum sağlamasını mümkün kılarak, sürdürülebilir ve esnek mimari çözümlerin geliştirilmesinde önemli bir rol üstlenmektedir. Güneş ışınımı, sıcaklık, rüzgâr, nem ve gün ışığı gibi çevresel değişkenlere anlık tepki verebilen bu sistemler, enerji verimliliğini artırmakta ve iç mekân konforunu optimize etmektedir. Akıllı malzemeler, sensör destekli otomasyon sistemleri ve yenilenebilir enerji teknolojileriyle entegre edilen adaptif cepheler, sürdürülebilir mimaride teknolojik dönüşümün somut bir örneğidir. Bu çalışma, adaptif cephelerin teknolojik gelişim sürecini, çevresel etkilerini ve Türkiye’deki uygulanabilirliğini çok boyutlu olarak incelemektedir. Fonksiyonel çeşitlilik, cephe tipi ve coğrafi konum gibi kriterlere göre seçilen örnek yapılar üzerinden yürütülen analizler, adaptif cephelerin enerji tüketiminde ciddi bir tasarruf sağladığını, karbon emisyonlarını azalttığını ve görsel/termal konforu artırdığını göstermektedir. Bazı uygulamalarda, fotovoltaik panellerle entegrasyon sayesinde yenilenebilir enerji üretimi desteklenmiş ve net sıfır enerji hedeflerine katkı sağlanmıştır. Türkiye özelinde ise yüksek ilk yatırım maliyeti, teknik bilgi eksikliği ve uygulayıcı farkındalığının düşük olması gibi engeller dikkat çekmektedir. Bu nedenle, yerel bağlama uygun stratejilerin ve politika önerilerinin geliştirilmesi gereklidir. Bu çalışma, adaptif cephelerin sürdürülebilir mimarideki çok boyutlu katkılarını ortaya koyarken, Türkiye koşullarına özgü yol haritalarını da tartışmaya açmaktadır.

Ethical Statement

Bu çalışma, doğrudan insan katılımı ya da etik kurul onayı gerektiren nitelikte veri içermediği için etik kurul onayı alınmamıştır.

Supporting Institution

Yazarlar bu makalenin araştırılması, yazarlığı ve/veya yayımlanması için hiçbir maddi destek almamışlardır.

References

  • Addington, M. ve Schodek, D. (2005) Smart Materials and New Technologies: For the Architecture and Design Professions. Architectural Press, Boston.
  • Aksamija, A. (2013). Sustainable Facades: Design Methods for High-Performance Building Envelopes. John Wiley ve Sons, Inc., Hoboken, New York, New Jersey.
  • ArchDaily. (2010a, November 17). Kiefer Technic Showroom / Ernst Giselbrecht + Partner. ArchDaily. https://www.archdaily.com/89270/kiefer-technic-showroom-ernst-giselbrecht-partner
  • ArchDaily. (2010b, February 9). Media-TIC / Enric Ruiz Geli. ArchDaily. https://www.archdaily.com/49150/media-tic-enric-ruiz-geli
  • ArchDaily. (2013, June 30). CH2 Melbourne City Council House 2 / DesignInc. ArchDaily. https://www.archdaily.com/395131/ch2-melbourne-city-council-house-2-designinc
  • Archilovers. (n.d.). The Thyssen Krupp Quarter. Archilovers. Retrieved January 28, 2025, from https://www.archilovers.com/projects/41642/the-thyssenkrupp-quarter.html#info
  • Attia, S. (2018). Evaluation of adaptive facades: The case study of Al Bahr Towers in the UAE. QScience Connect, 2017(2). https://doi.org/10.5339/connect.2017.qgbc.6
  • Attia, S., Bertrand, S., Cuchet, M., Yang, S., ve Tabadkani, A. (2022). Comparison of thermal energy saving potential and overheating risk of four adaptive façade technologies in office buildings. Sustainability, 14(10), Article 6106. https://doi.org/10.3390/su14106106
  • Attia, S., Bilir, S., Safy, T., Struck, C., Loonen, R., ve Goia, F. (2018). Current trends and future challenges in the performance assessment of adaptive façade systems. Energy and Buildings, 179, 165–182. https://doi.org/10.1016/j.enbuild.2018.09.017
  • Attia, S., Garat, S., ve Cools, M. (2019). Development and validation of a survey for well-being and interaction assessment by occupants in office buildings with adaptive facades. Building and Environment, 157, 268–276. https://doi.org/10.1016/j.buildenv.2019.04.054
  • Aung, T. (2023). Implementing green facades: A step towards sustainable smart buildings. Journal of Smart Cities and Society, 2(1), 41–51. https://doi.org/10.3233/scs-230014
  • Bektaş, Y., ve Sakarya, A. (2023). The Relationship between the Built Environment and Climate Change: The Case of Turkish Provinces. Sustainability. https://doi.org/10.3390/su15021659
  • Belek, A. N. ve Yamacli, R. (2023) Design solutions towards sustainable design criteria of adaptive façade systems, ArtGRID, 5(2), 216-239
  • Berkmen Çelikağ, H. (2023). Ofis yapılarında iklime uyarlı cephe tasarımlarının irdelenmesi (Yayımlanmış Yüksek Lisans Tezi). Dokuz Eylül Üniversitesi, Fen Bilimleri Enstitüsü, İzmir.
  • Bilgili, A., Çelik, K., ve Bilgili, M. (2024). Analysis of historical and future cooling degree days over Türkiye for facade design and energy efficiency in buildings. Journal of Thermal Analysis and Calorimetry. https://doi.org/10.1007/s10973-024-13323-0
  • Boake, T. M. (2014) Diagrid Structure. Birkhauser, Basel, Switzerland.
  • Böke, J., Denz, P., Suwannapruk, N., ve Vongsingha, P. (2022). Active, passive and cyber-physical adaptive façade strategies. Journal of Facade Design and Engineering, 10(2), 1–18. https://doi.org/10.47982/jfde.2022.powerskin.01
  • Bütüner, F., Çakmakli, A., Karakadilar, A., ve Deniz, E. (2023). A spatio-temporal framework to assess urban heat island effect on Yeni Mamak urban transformation zone (Ankara, Türkiye). Open House International. https://doi.org/10.1108/ohi-06-2022-0166
  • Čekon, M., ve Slávik, R. (2017). A non-ventilated solar façade concept based on selective and transparent insulation material integration: An experimental study. Energies, 10(6), Article 815. https://doi.org/10.3390/en10060815
  • Charks, N. M. (2019). Towards environmentally responsive architecture: A framework for biomimic design of building’s skin. Journal of Engineering Sciences, 47(3), 368–376.
  • Cığızoğlu, M. (2011). Biyomimetik tepkisel yüzey örtüsü tasarımı için bir model önerisi: Hexa-myosis. (Yayımlanmış Yüksek Lisans Tezi). İstanbul Teknik Üniversitesi, Fen Bilimleri Enstitüsü, İstanbul.
  • Çelik, E. B. (2023). Sürdürülebilir Mimari Tasarımda Akıllı Cepheler (Yayımlanmış Yüksek Lisans Tezi). Eskişehir Teknik Üniversitesi, Lisansüstü Eğitim Enstitüsü, Eskişehir.
  • Demirel, B. (2016). Güneş koruyucu paneller. İç Mimarlık Dergisi. https://www.icmimarlikdergisi.com/2016/04/04/gunes-koruyucu-paneller/
  • Don, D. (2023). Study of technological advancement and challenges of façade system for sustainable building: Current design practice. Scientific Reports, 3. https://doi.org/10.21203/rs.3.rs-3179925/v1
  • Engin, A. S., ve Dinçer, A. E. (2021). Kinetik mimari cephelerin sınıflandırılması özelinde bir değerlendirme yaklaşımı. IDA: International Design and Art Journal, 3(1), 70-85.
  • Faragalla, A., ve Asadi, S. (2022). Biomimetic design for adaptive building façades: A paradigm shift towards environmentally conscious architecture. Energies, 15(15), 5390. https://doi.org/10.3390/en15155390
  • Fernández, A., Peinado, Z., ve Agustin, L. (2012). Generative architecture as a methodology of optimisation: Spanish examples. Less - More Architecture Design Landscape. Le vie dei Mercanti - X Forum Internazionale di Studi Proceedings.
  • Fiorito, G., Di Gaetano, C., Guarrera, S., Rosa, F., Feldmen, M. W., Piazza, A. ve Matullo, G. (2016). The Italian genome reflects the history of Europe and the Mediterranean basin. European Journal of Human Genetics (2016) 24, 1056–1062.
  • Gediri Gökçen, G. Ş. (2023). Uyum gösteren (adaptif) cepheler: hareketli güneş kontrol elemanlarının ısıl enerji performansının değerlendirilmesi (Yayımlanmış Yüksek Lisans Tezi) Necmettin Erbakan Üniversitesi, Fen Bilimleri Enstitüsü, Konya.
  • Ghaffarianhoseini, A., Ghaffarianhoseini, A., Berardic, U., Tookeya, J., Li, D. H. W., Kariminia, S. (2016). Exploring the advantages and challenges of double-skin façades (DSFs). Renewable and Sustainable Energy Reviews, 60, 1052–1065.
  • Gonzalez, E. (2023). Advancing solar control and energy harvesting through the use of pneumatically actuated elastic adaptive façades. Energies, 15(15), 744-756. https://doi.org/10.7712/150123.9828.444680
  • Hartman, P., Čeheľová, D., ve Bielek, B. (2019). Principal solutions for sustainable adaptive façades providing suitable indoor environment for inhabitants. Applied Mechanics and Materials, 887, 435-442. https://doi.org/10.4028/www.scientific.net/amm.887.435
  • Hoes, P., ve Hensen, J. (2016). The potential of lightweight low-energy houses with hybrid adaptable thermal storage: Comparing the performance of promising concepts. Energy and Buildings, 110, 79-93. https://doi.org/10.1016/j.enbuild.2015.10.036
  • Htet, A. (2023). The intersection of facade engineering and building information modeling: Opportunities and challenges. Journal of Technology Innovations and Energy, 2(3), 94-110. https://doi.org/10.56556/jtie.v2i3.643
  • IPCC. (2021). Climate Change 2021: The Physical Science Basis. Cambridge University Press. https://www.ipcc.ch/report/ar6/wg1/
  • Işınkaralar, O. (2023). Spatio-temporal patterns of climate parameter changes in Western Mediterranean basin of Türkiye and implications for urban planning. Air Quality, Atmosphere ve Health, 16, 2351 - 2363. https://doi.org/10.1007/s11869-023-01416-y
  • Kınay, U., Laukkarinen, A., ve Vinha, J. (2023). Renovation wave of the residential building stock targets for the carbon-neutral: Evaluation by Finland and Türkiye case studies for energy demand. Energy for Sustainable Development. https://doi.org/10.1016/j.esd.2023.04.014
  • Kocaağa, M. (2022). Çevresel performans odaklı adaptif cephe sistemlerinin incelenmesi (Yayımlanmış Yüksek Lisans Tezi). Fatih Sultan Mehmet Vakıf Üniversitesi, Fen Bilimleri Enstitüsü, İstanbul.
  • Loonen, R., Favoino, F., Hensen, J., ve Overend, M. (2017). Review of current status, requirements and opportunities for building performance simulation of adaptive facades†. Journal of Building Performance Simulation, 10, 205 - 223. https://doi.org/10.1080/19401493.2016.1152303
  • Loonen, R., Trcka, M., Cóstola, D., ve Hensen, J. (2013). Climate adaptive building shells: State-of-the-art and future challenges. Renewable and Sustainable Energy Reviews, 25, 483-493. https://doi.org/10.1016/j.rser.2013.04.016
  • Niazy, D., Metwally, E., Rifat, M., Awad, M., ve Elsabbagh, A. (2023). A conceptual design of circular adaptive façade module for reuse. Scientific Reports, 13. https://doi.org/10.1038/s41598-023-47593-9
  • Ochoa, C. E. ve Capeluto, I. G. (2009). Advice tool for early design stages of intelligent facades based on energy and visual comfort approach. Energy and Buildings, 41 (2009), 480–488.
  • Perino, M., ve Serra, V. (2015). Switching from static to adaptable and dynamic building envelopes: A paradigm shift for the energy efficiency in buildings. Journal of Facade Design and Engineering, 3(2), 143-163. https://doi.org/10.3233/fde-150039
  • Poirazis, H. (2004) Double Skin Facades for Office Buildings. Division of Energy and Building Design, Department of Construction and Architecture, Lund Institute of Technology, Lund University, Lund, Report EBD-R-04/3.
  • Qurraie, B., ve Bakırhan, E. (2023). Evaluation of facade systems in different climate zones regarding energy, comfort, emission, and cost. Arab Journal of Basic and Applied Sciences, 30, 123 - 136. https://doi.org/10.1080/25765299.2023.2180885
  • Salamaga, D. (2023). Intelligent facade innovation (IFI): Using IIoT, digital twin, and next-gen architecture designs. https://doi.org/10.1115/imece2023-113117
  • Srisuwan, T. (2022). Applications of biomimetic adaptive facades for enhancing building energy efficiency. International Journal of Building Urban Interior and Landscape Technology (Built), 20, 7-18. https://doi.org/10.56261/built.v20.247184
  • Şenel, H. (2023). Using KRF structures as an adaptive facade and evaluation of daylight performance based on geometry: A case study in Ankara. International Journal of Built Environment and Sustainability, 11(1), 1-13. https://doi.org/10.11113/ijbes.v11.n1.1128
  • Taş, İ. N., ve Şenkal Sezer, F. (2024). Adaptif cepheler ve çalışma mekânizmalarına göre adaptif cephe sistemlerinin örnekler üzerinden incelenmesi. KAPU Trakya Journal of Architecture and Design, 4(1), 53-72.
  • Taşoğlu, E., Öztürk, M., ve Yazıcı, Ö. (2024). High Resolution Köppen‐Geiger Climate Zones of Türkiye. International Journal of Climatology. https://doi.org/10.1002/joc.8635
  • United Nations. (2015). Transforming our world: The 2030 agenda for sustainable development. https://sdgs.un.org/2030agenda
  • Wilkinson, C., ve Wood, A. (2012). Al Bahar Towers: External Automated Shading System: Jury Statement of CTBUH Innovation Award.
  • Winstanley, T. (2011). AD Classics: Institut du Monde Arabe / Enrique Jan + Jean Nouvel + Architecture-Studio. ArchDaily. https://www.archdaily.com/162101/ad-classics-institut-du-monde-arabe-jean-nouvel
  • Wood, A. and Salib, R. (2013) Natural Ventilation in High-Rise Office Buildings (an Output of the CTBUH (Council on Tall Buildings and Urban Habitat). Sustainability Working Group, Illinois Institute of Technology, Routledge, New York.
  • Yang, S., Cannavale, A., Carloc, A., Prasad, D., Sproul, A., Fiorito, F. (2020). Performance assessment of BIPV/T double-skin façade for various climate zones in Australia: Effects on energy consumption. Solar Energy, 199, 377-399.
  • Yalaz, E., ve Dişli, G. (2024). Climate-responsive building façade design: Inspirations from historic buildings in semi-cold climate zone. Sustainable Energy Technologies and Assessments. https://doi.org/10.1016/j.seta.2024.103914
  • Yavaşlı, D., ve Erlat, E. (2023). Climate model projections of aridity patterns in Türkiye: A comprehensive analysis using CMIP6 models and three aridity indices. International Journal of Climatology, 43, 6207 - 6224. https://doi.org/10.1002/joc.8201
  • Zameem, M. (2023). Adaptive facade using SMP actuator for enhancing thermal performance in buildings. https://doi.org/10.20944/preprints202307.0931.v1

The Role of Adaptive Facades in Sustainable Building Design: Technological Innovations and Environmental Impacts

Year 2025, Volume: 6 Issue: 2, 109 - 125, 31.12.2025
https://doi.org/10.58317/eksen.1628771

Abstract

Adaptive facade systems enable buildings to respond dynamically to environmental conditions, contributing significantly to the development of sustainable and flexible architectural solutions. These systems adjust their performance in real time based on variables such as solar radiation, temperature, wind, humidity, and daylight, enhancing energy efficiency while optimizing indoor comfort. Integrated with smart materials, sensor-based automation, and renewable energy technologies, adaptive facades exemplify the effective application of innovation in sustainable architecture. This study examines the technological evolution, environmental implications, and applicability of adaptive facades, particularly within the context of Turkey, through a multidimensional lens. Using selected case studies classified by functional diversity, facade type, and geographical context, the research identifies how adaptive facades contribute to significant energy savings, reductions in carbon emissions, and improvements in visual and thermal comfort. In several instances, the integration of photovoltaic panels also supports renewable energy generation and advances net-zero energy goals. However, the broader adoption of adaptive facades in Turkey is challenged by high initial investment costs, limited technical expertise, and low awareness among stakeholders. Therefore, the development of locally relevant strategies and policy recommendations is essential. This study not only highlights the multifaceted role of adaptive facades in sustainable architecture but also proposes tailored roadmaps for their implementation in the Turkish context.

Ethical Statement

As this study does not involve direct human participation or data that requires ethics committee approval, approval from the ethics committee was not obtained.

Supporting Institution

The author(s) received no financial support for the research, authorship, and/or publication of this article.

References

  • Addington, M. ve Schodek, D. (2005) Smart Materials and New Technologies: For the Architecture and Design Professions. Architectural Press, Boston.
  • Aksamija, A. (2013). Sustainable Facades: Design Methods for High-Performance Building Envelopes. John Wiley ve Sons, Inc., Hoboken, New York, New Jersey.
  • ArchDaily. (2010a, November 17). Kiefer Technic Showroom / Ernst Giselbrecht + Partner. ArchDaily. https://www.archdaily.com/89270/kiefer-technic-showroom-ernst-giselbrecht-partner
  • ArchDaily. (2010b, February 9). Media-TIC / Enric Ruiz Geli. ArchDaily. https://www.archdaily.com/49150/media-tic-enric-ruiz-geli
  • ArchDaily. (2013, June 30). CH2 Melbourne City Council House 2 / DesignInc. ArchDaily. https://www.archdaily.com/395131/ch2-melbourne-city-council-house-2-designinc
  • Archilovers. (n.d.). The Thyssen Krupp Quarter. Archilovers. Retrieved January 28, 2025, from https://www.archilovers.com/projects/41642/the-thyssenkrupp-quarter.html#info
  • Attia, S. (2018). Evaluation of adaptive facades: The case study of Al Bahr Towers in the UAE. QScience Connect, 2017(2). https://doi.org/10.5339/connect.2017.qgbc.6
  • Attia, S., Bertrand, S., Cuchet, M., Yang, S., ve Tabadkani, A. (2022). Comparison of thermal energy saving potential and overheating risk of four adaptive façade technologies in office buildings. Sustainability, 14(10), Article 6106. https://doi.org/10.3390/su14106106
  • Attia, S., Bilir, S., Safy, T., Struck, C., Loonen, R., ve Goia, F. (2018). Current trends and future challenges in the performance assessment of adaptive façade systems. Energy and Buildings, 179, 165–182. https://doi.org/10.1016/j.enbuild.2018.09.017
  • Attia, S., Garat, S., ve Cools, M. (2019). Development and validation of a survey for well-being and interaction assessment by occupants in office buildings with adaptive facades. Building and Environment, 157, 268–276. https://doi.org/10.1016/j.buildenv.2019.04.054
  • Aung, T. (2023). Implementing green facades: A step towards sustainable smart buildings. Journal of Smart Cities and Society, 2(1), 41–51. https://doi.org/10.3233/scs-230014
  • Bektaş, Y., ve Sakarya, A. (2023). The Relationship between the Built Environment and Climate Change: The Case of Turkish Provinces. Sustainability. https://doi.org/10.3390/su15021659
  • Belek, A. N. ve Yamacli, R. (2023) Design solutions towards sustainable design criteria of adaptive façade systems, ArtGRID, 5(2), 216-239
  • Berkmen Çelikağ, H. (2023). Ofis yapılarında iklime uyarlı cephe tasarımlarının irdelenmesi (Yayımlanmış Yüksek Lisans Tezi). Dokuz Eylül Üniversitesi, Fen Bilimleri Enstitüsü, İzmir.
  • Bilgili, A., Çelik, K., ve Bilgili, M. (2024). Analysis of historical and future cooling degree days over Türkiye for facade design and energy efficiency in buildings. Journal of Thermal Analysis and Calorimetry. https://doi.org/10.1007/s10973-024-13323-0
  • Boake, T. M. (2014) Diagrid Structure. Birkhauser, Basel, Switzerland.
  • Böke, J., Denz, P., Suwannapruk, N., ve Vongsingha, P. (2022). Active, passive and cyber-physical adaptive façade strategies. Journal of Facade Design and Engineering, 10(2), 1–18. https://doi.org/10.47982/jfde.2022.powerskin.01
  • Bütüner, F., Çakmakli, A., Karakadilar, A., ve Deniz, E. (2023). A spatio-temporal framework to assess urban heat island effect on Yeni Mamak urban transformation zone (Ankara, Türkiye). Open House International. https://doi.org/10.1108/ohi-06-2022-0166
  • Čekon, M., ve Slávik, R. (2017). A non-ventilated solar façade concept based on selective and transparent insulation material integration: An experimental study. Energies, 10(6), Article 815. https://doi.org/10.3390/en10060815
  • Charks, N. M. (2019). Towards environmentally responsive architecture: A framework for biomimic design of building’s skin. Journal of Engineering Sciences, 47(3), 368–376.
  • Cığızoğlu, M. (2011). Biyomimetik tepkisel yüzey örtüsü tasarımı için bir model önerisi: Hexa-myosis. (Yayımlanmış Yüksek Lisans Tezi). İstanbul Teknik Üniversitesi, Fen Bilimleri Enstitüsü, İstanbul.
  • Çelik, E. B. (2023). Sürdürülebilir Mimari Tasarımda Akıllı Cepheler (Yayımlanmış Yüksek Lisans Tezi). Eskişehir Teknik Üniversitesi, Lisansüstü Eğitim Enstitüsü, Eskişehir.
  • Demirel, B. (2016). Güneş koruyucu paneller. İç Mimarlık Dergisi. https://www.icmimarlikdergisi.com/2016/04/04/gunes-koruyucu-paneller/
  • Don, D. (2023). Study of technological advancement and challenges of façade system for sustainable building: Current design practice. Scientific Reports, 3. https://doi.org/10.21203/rs.3.rs-3179925/v1
  • Engin, A. S., ve Dinçer, A. E. (2021). Kinetik mimari cephelerin sınıflandırılması özelinde bir değerlendirme yaklaşımı. IDA: International Design and Art Journal, 3(1), 70-85.
  • Faragalla, A., ve Asadi, S. (2022). Biomimetic design for adaptive building façades: A paradigm shift towards environmentally conscious architecture. Energies, 15(15), 5390. https://doi.org/10.3390/en15155390
  • Fernández, A., Peinado, Z., ve Agustin, L. (2012). Generative architecture as a methodology of optimisation: Spanish examples. Less - More Architecture Design Landscape. Le vie dei Mercanti - X Forum Internazionale di Studi Proceedings.
  • Fiorito, G., Di Gaetano, C., Guarrera, S., Rosa, F., Feldmen, M. W., Piazza, A. ve Matullo, G. (2016). The Italian genome reflects the history of Europe and the Mediterranean basin. European Journal of Human Genetics (2016) 24, 1056–1062.
  • Gediri Gökçen, G. Ş. (2023). Uyum gösteren (adaptif) cepheler: hareketli güneş kontrol elemanlarının ısıl enerji performansının değerlendirilmesi (Yayımlanmış Yüksek Lisans Tezi) Necmettin Erbakan Üniversitesi, Fen Bilimleri Enstitüsü, Konya.
  • Ghaffarianhoseini, A., Ghaffarianhoseini, A., Berardic, U., Tookeya, J., Li, D. H. W., Kariminia, S. (2016). Exploring the advantages and challenges of double-skin façades (DSFs). Renewable and Sustainable Energy Reviews, 60, 1052–1065.
  • Gonzalez, E. (2023). Advancing solar control and energy harvesting through the use of pneumatically actuated elastic adaptive façades. Energies, 15(15), 744-756. https://doi.org/10.7712/150123.9828.444680
  • Hartman, P., Čeheľová, D., ve Bielek, B. (2019). Principal solutions for sustainable adaptive façades providing suitable indoor environment for inhabitants. Applied Mechanics and Materials, 887, 435-442. https://doi.org/10.4028/www.scientific.net/amm.887.435
  • Hoes, P., ve Hensen, J. (2016). The potential of lightweight low-energy houses with hybrid adaptable thermal storage: Comparing the performance of promising concepts. Energy and Buildings, 110, 79-93. https://doi.org/10.1016/j.enbuild.2015.10.036
  • Htet, A. (2023). The intersection of facade engineering and building information modeling: Opportunities and challenges. Journal of Technology Innovations and Energy, 2(3), 94-110. https://doi.org/10.56556/jtie.v2i3.643
  • IPCC. (2021). Climate Change 2021: The Physical Science Basis. Cambridge University Press. https://www.ipcc.ch/report/ar6/wg1/
  • Işınkaralar, O. (2023). Spatio-temporal patterns of climate parameter changes in Western Mediterranean basin of Türkiye and implications for urban planning. Air Quality, Atmosphere ve Health, 16, 2351 - 2363. https://doi.org/10.1007/s11869-023-01416-y
  • Kınay, U., Laukkarinen, A., ve Vinha, J. (2023). Renovation wave of the residential building stock targets for the carbon-neutral: Evaluation by Finland and Türkiye case studies for energy demand. Energy for Sustainable Development. https://doi.org/10.1016/j.esd.2023.04.014
  • Kocaağa, M. (2022). Çevresel performans odaklı adaptif cephe sistemlerinin incelenmesi (Yayımlanmış Yüksek Lisans Tezi). Fatih Sultan Mehmet Vakıf Üniversitesi, Fen Bilimleri Enstitüsü, İstanbul.
  • Loonen, R., Favoino, F., Hensen, J., ve Overend, M. (2017). Review of current status, requirements and opportunities for building performance simulation of adaptive facades†. Journal of Building Performance Simulation, 10, 205 - 223. https://doi.org/10.1080/19401493.2016.1152303
  • Loonen, R., Trcka, M., Cóstola, D., ve Hensen, J. (2013). Climate adaptive building shells: State-of-the-art and future challenges. Renewable and Sustainable Energy Reviews, 25, 483-493. https://doi.org/10.1016/j.rser.2013.04.016
  • Niazy, D., Metwally, E., Rifat, M., Awad, M., ve Elsabbagh, A. (2023). A conceptual design of circular adaptive façade module for reuse. Scientific Reports, 13. https://doi.org/10.1038/s41598-023-47593-9
  • Ochoa, C. E. ve Capeluto, I. G. (2009). Advice tool for early design stages of intelligent facades based on energy and visual comfort approach. Energy and Buildings, 41 (2009), 480–488.
  • Perino, M., ve Serra, V. (2015). Switching from static to adaptable and dynamic building envelopes: A paradigm shift for the energy efficiency in buildings. Journal of Facade Design and Engineering, 3(2), 143-163. https://doi.org/10.3233/fde-150039
  • Poirazis, H. (2004) Double Skin Facades for Office Buildings. Division of Energy and Building Design, Department of Construction and Architecture, Lund Institute of Technology, Lund University, Lund, Report EBD-R-04/3.
  • Qurraie, B., ve Bakırhan, E. (2023). Evaluation of facade systems in different climate zones regarding energy, comfort, emission, and cost. Arab Journal of Basic and Applied Sciences, 30, 123 - 136. https://doi.org/10.1080/25765299.2023.2180885
  • Salamaga, D. (2023). Intelligent facade innovation (IFI): Using IIoT, digital twin, and next-gen architecture designs. https://doi.org/10.1115/imece2023-113117
  • Srisuwan, T. (2022). Applications of biomimetic adaptive facades for enhancing building energy efficiency. International Journal of Building Urban Interior and Landscape Technology (Built), 20, 7-18. https://doi.org/10.56261/built.v20.247184
  • Şenel, H. (2023). Using KRF structures as an adaptive facade and evaluation of daylight performance based on geometry: A case study in Ankara. International Journal of Built Environment and Sustainability, 11(1), 1-13. https://doi.org/10.11113/ijbes.v11.n1.1128
  • Taş, İ. N., ve Şenkal Sezer, F. (2024). Adaptif cepheler ve çalışma mekânizmalarına göre adaptif cephe sistemlerinin örnekler üzerinden incelenmesi. KAPU Trakya Journal of Architecture and Design, 4(1), 53-72.
  • Taşoğlu, E., Öztürk, M., ve Yazıcı, Ö. (2024). High Resolution Köppen‐Geiger Climate Zones of Türkiye. International Journal of Climatology. https://doi.org/10.1002/joc.8635
  • United Nations. (2015). Transforming our world: The 2030 agenda for sustainable development. https://sdgs.un.org/2030agenda
  • Wilkinson, C., ve Wood, A. (2012). Al Bahar Towers: External Automated Shading System: Jury Statement of CTBUH Innovation Award.
  • Winstanley, T. (2011). AD Classics: Institut du Monde Arabe / Enrique Jan + Jean Nouvel + Architecture-Studio. ArchDaily. https://www.archdaily.com/162101/ad-classics-institut-du-monde-arabe-jean-nouvel
  • Wood, A. and Salib, R. (2013) Natural Ventilation in High-Rise Office Buildings (an Output of the CTBUH (Council on Tall Buildings and Urban Habitat). Sustainability Working Group, Illinois Institute of Technology, Routledge, New York.
  • Yang, S., Cannavale, A., Carloc, A., Prasad, D., Sproul, A., Fiorito, F. (2020). Performance assessment of BIPV/T double-skin façade for various climate zones in Australia: Effects on energy consumption. Solar Energy, 199, 377-399.
  • Yalaz, E., ve Dişli, G. (2024). Climate-responsive building façade design: Inspirations from historic buildings in semi-cold climate zone. Sustainable Energy Technologies and Assessments. https://doi.org/10.1016/j.seta.2024.103914
  • Yavaşlı, D., ve Erlat, E. (2023). Climate model projections of aridity patterns in Türkiye: A comprehensive analysis using CMIP6 models and three aridity indices. International Journal of Climatology, 43, 6207 - 6224. https://doi.org/10.1002/joc.8201
  • Zameem, M. (2023). Adaptive facade using SMP actuator for enhancing thermal performance in buildings. https://doi.org/10.20944/preprints202307.0931.v1
There are 58 citations in total.

Details

Primary Language Turkish
Subjects Architectural Science and Technology, Materials and Technology in Architecture, Sustainable Architecture
Journal Section Review
Authors

Sadık Akşar 0000-0003-0583-4197

Rengin Beceren Öztürk 0000-0001-6259-3364

Submission Date January 28, 2025
Acceptance Date July 12, 2025
Publication Date December 31, 2025
Published in Issue Year 2025 Volume: 6 Issue: 2

Cite

APA Akşar, S., & Beceren Öztürk, R. (2025). Adaptif Cephelerin Sürdürülebilir Yapı Tasarımındaki Rolü: Teknolojik Yenilikler ve Çevresel Etkiler. EKSEN Dokuz Eylül Üniversitesi Mimarlık Fakültesi Dergisi, 6(2), 109-125. https://doi.org/10.58317/eksen.1628771