Research Article
BibTex RIS Cite

EXAMINATION OF RESPONSIVE FACADE SYSTEMS IN TERMS OF EMBODIED ENERGY: KIEFER TECHNIC SHOWROOM

Year 2023, Volume: 4 Issue: 2, 90 - 103, 31.12.2023
https://doi.org/10.58317/eksen.1318707

Abstract

Responsive façade systems (RFS), which come to the fore in the twenty-first century architecture, can reduce the operational energy consumption of buildings by 50%. However, the embodied energies of these systems are scarcely researched. Therefore, this study aims at reducing the embodied energy of RFSs without losing their performance values for a sustainable approach. It was assumed that components made of materials such as aluminum and stainless steel, which have higher embodied energy than other materials, were replaced with materials with relatively lower embodied energy, such as wood-based materials. To quantitatively examine the subject, RFS of Kiefer Technic Showroom is selected as a case study. The selection criteria was the material in terms of embodied energy and the height of the facade in terms of security. The selected RFS was divided into four basic components: aluminium panels, aluminium rails, stainless steel brackets, and stainless steel grilles. Then the energy required for raw material supply (A1) of the RFS was determined according to European Standards (EN 15804:2012). The methods to reduce the embodied energy in RFS design, alternative materials and detailing principles were discussed and a detail was proposed. According to the detail, the embodied energy of the RFS was decreased by 52 %. Thus it was demonstrated that the embodied energies of RFSs can be reduced simply by changing material preferences at the design stage, and that the importance of paying attention to qualities and embodied energies of materials by taking performance data into account in RFS designs.

References

  • Abediniangerabi, B., Shahandashti, S. M. ve Makhmalbaf, A. (2020). A data-driven framework for energy-conscious design of building facade systems. Journal of Building Engineering, 29, 101172. doi:10.1016/j.jobe.2020.101172
  • Almusaed, A., Yitmen, I., Almsaad, A., Akiner, İ. ve Akiner, M.E. (2021). Coherent investigation on a smart kinetic wooden façade based on material passport concepts and environmental profile inquiry. Materials, 14(14), 3771. doi:10.3390/ma14143771
  • Alotaibi, F. (2015). The role of kinetic envelopes to improve energy performance in buildings. Journal of Architectural Engineering Technology, 4(3). doi:10.4172/2168-9717.1000149
  • Attia, S. (2017). Evaluation of adaptive facades: The case study of Al Bahr Towers in the UAE. QScience Connect, Special Issue on Shaping Qatar’s Sustainable Built Environment-Part I, 2. doi:10.5339/connect.2017.qgbc.6
  • Attia, S., Bilir, S., Safy, T., Struck, C., Loonen, R. ve Goia, F. (2018). Current trends and future challenges in the performance assessment of adaptive façade systems. Energy and Buildings, 179, 165-182. doi:10.1016/j.enbuild.2018.09.017
  • Bostancı, C. (2006). Akıllı kinetik güneş kontrol sistemi önerisi. (Yayımlanmamış Yüksek Lisans Tezi). Yıldız Teknik Üniversitesi, Fen Bilimleri Enstitüsü, İstanbul. Web adresinden 1 Ekim 2023 tarihinde erişildi: https://tez.yok.gov.tr/UlusalTezMerkezi/
  • Brand, S. (1995). How buildings learn. What happens after they’re built. New York: Penguin Books.
  • Cabeza, L.F., Barreneche, C., Miró, L., Morera, J.M., Bartolí, E. ve Fernandez, A.I. (2013). Low carbon and low embodied energy materials in buildings: A review. Renewable & Sustainable Energy Reviews, 23, 536-542. doi:10.1016/j.rser.2013.03.017
  • Cilento, K. (5 Eylül 2012). Al Bahar Towers responsive facade / Aedas. ArchDaily web adresinden 15 Mayıs 2023 tarihinde erişildi: https://www.archdaily.com/270592/al-bahar-towers-responsive-facade-aedas
  • Crespi, M. ve Persiani, S. G. L. (2019). Rethinking adaptive building skins from a life cycle assessment perspective. Journal of Facade Design and Engineering, 7(2), 21–43. doi:10.7480/jfde.2019.2.2467
  • Elghazi, Y., Wagdy, Y., Mohamed, S. ve Hassan, A. (2014). Daylighting driven design: Optimizing kaleidocycle facade for hot arid climate. BauSIM2014, Fifth German-Austrian IBPSA Conference (ss. 314-321). RWTH Aachen University. doi:10.13140/RG.2.1.3198.4408
  • Energy Education. (t.y.). Aluminum. Energy Education web adresinden 7 Mayıs 2023 tarihinde erişildi: https://energyeducation.ca/encyclopedia/Aluminum
  • Ernst Giselbrecht + Partner. (t.y.). Kiefer Teknik Galerisi’nin kat planları [Fotoğraf]. Ernst Giselbrecht + Partner web adresinden 30 Nisan 2023 tarihinde erişildi: https://www.giselbrecht.at/projekte/gewerbe_industriebauten/kiefer/index.html
  • European Standards EN 15804. (2012). Sustainability of construction works - Environmental product declarations - Core rules for the product category of construction products. European Committee for Standardization, Brüksel. ISBN 978 0 580 51585 9
  • Gündoğdu, E. ve Arslan, H. D. (2020). Mimaride enerji etkin cephe ve biyomimikri. Gazi University Journal of Science Part C: Design and Technology, 8(4), 922-935. doi:10.29109/gujsc.799424
  • Hildebrand, L. (2012). Embodied energy in façade design. 8th Internationales Fassadensymposium: Fassade2012 (ss. 64-75). Luzern. Web adresinden 1 Ekim 2023 tarihinde erişildi: https://repository.tudelft.nl/islandora/object/uuid%3A15b40e6f-cad1-48b2-9ca0-daf04e27b161
  • Holstov, A., Farmer, G. ve Bridgens, B. (2017). Sustainable materialisation of responsive architecture. Sustainability, 9(3), 435. doi:10.3390/su9030435
  • Karanouh, A. ve Kerber, E. (2015). Innovations in dynamic architecture. The Al-Bahr Towers design and delivery of complex facades. Journal of Facade Design and Engineering, 3(2), 185–221. doi:10.3233/FDE-150040
  • Lawson, B. (2006). Embodied energy of building materials. BDP Environment Design Guide, Pro 2, 1-5. doi:10.2307/26148351
  • Maden, F. (2023). Geleceğin mimarisi: Kinetik yapılar ve Mashrabiya tabanlı cephe tasarımı. Tasarım Kuram, 19(38), 98-114. doi:10.59215/tasarimkuram.2023.373
  • Megahed, N. (2017). Understanding kinetic architecture: Typology, classification, and design strategy. Architectural Engineering and Design Management, 13(2), 130-146. doi:10.1080/17452007.2016.1203676
  • Moloney, J. (2011). Designing kinetics for architectural facades: State change (1. basım). New York: Routledge. doi:10.4324/9780203814703
  • One Ocean Thematic Pavilion. (22 Mayıs 2012). One Ocean Thematic Pavilion [Fotoğraf]. ArchDaily web adresinden 15 Mayıs 2023 tarihinde erişildi: https://www.archdaily.com/236979/one-ocean-thematic-pavilion-expo-2012-som
  • Preto, S. (2020). Dynamic facades: Optimization of natural light at workplaces. J. Charytonowicz ve C. Falcão (Der.), Advances in Human Factors in Architecture, Sustainable Urban Planning and Infrastructure, AHFE 2019, Advances in Intelligent Systems and Computing, 966 (ss. 392-402). Cham: Springer. doi:10.1007/978-3-030-20151-7_37
  • Q1 ThyssenKrupp Quarter. (4 Şubat 2013). Q1 ThyssenKrupp Quarter [Fotoğraf]. ArchDaily web adresinden 15 Mayıs 2023 tarihinde erişildi: https://www.archdaily.com/326747/q1-thyssenkrupp-quarter-essen-jswd-architekten-chaix-morel-et-associes
  • Quintáns, C. (21 Mart 2015). Kiefer Teknik Galerisi cephesinin sistem kesiti [Fotoğraf]. Tectónica web adresinden 15 Mayıs 2023 tarihinde erişildi: https://tectonica.archi/articles/showroom-kiefer-technic/
  • Sartori, I. ve Hestnes, A. G. (2007). Energy use in the life cycle of conventional and low-energy buildings: A review article. Energy and Buildings, 39(3), 249–257. doi:10.1016/j.enbuild.2006.07.001
  • Schielke, T. (29 Mayıs 2014). Arap Dünya Enstitüsü ve Al Bahr Kuleleri [Fotoğraf]. ArchDaily web adresinden 28 Mayıs 2023 tarihinde erişildi: https://www.archdaily.com/510226/light-matters-mashrabiyas-translating-tradition-into-dynamic-facades
  • Schumacher, M., Schaeffer, O. ve Vogt, M. M. (2010). MOVE: Architecture in motion. Dynamic components and elements. Basel: Birkhäuser. ISBN 978-3-7643-9986-3
  • SGG (Saint-Gobain Glass) ve ARUP. (2022). Carbon footprint of façades: Significance of glass. Findings from the life cycle assessment of 16 façade typologies & 18,000 design simulations. Temmuz 2022 Raporu. https://www.saint-gobain-glass.com/carbon-footprint-facades-significance-glass
  • Sheikh, W. T. ve Asghar, Q. (2019). Adaptive biomimetic facades: Enhancing energy efficiency of highly glazed buildings. Frontiers of Architectural Research, 8(3), 319-331. doi:10.1016/j.foar.2019.06.001
  • Tabadkani, A., Valinejad Shoubi, M., Soflaei, F. ve Banihashemi, S. (2019). Integrated parametric design of adaptive facades for user’s visual comfort. Automation in Construction, 106, 102857. doi:10.1016/j.autcon.2019.102857
  • Thyssenkrupp. (t.y.). Density of aluminium. Thyssenkrupp web adresinden 7 Mayıs 2023 tarihinde erişildi: https://www.thyssenkrupp-materials.co.uk/density-of-aluminium.html
  • Vinnitskaya, I. (17 Kasım 2010). Panellerin oluşturduğu koreografiler [Fotoğraf]. ArchDaily web adresinden 15 Mayıs 2023 tarihinde erişildi: https://www.archdaily.com/89270/kiefer-technic-showroom-ernst-giselbrecht-partner
  • Wellington Yapı Performansı Araştırma Merkezi. (t.y.). Embodied energy coefficients. Victoria University of Wellington web adresinden 1 Ekim 2023 tarihinde erişildi: https://www.wgtn.ac.nz/architecture/centres/cbpr/resources/pdfs/ee-coefficients.pdf
  • World material. (t.y.). Weight & density of stainless steel. World material web adresinden 1 Mayıs 2023 tarihinde erişildi: https://www.theworldmaterial.com/weight-density-of-stainless-steel/
  • WPIF (Wood Panel Industries Federation). (2014). Density of playwood. WPIF web adresinden 1 Ekim 2023 tarihinde erişildi: https://wpif.org.uk/uploads/PanelGuide/PanelGuide_2014_Annex2D.pdf
  • Zolfagharpour, A., Shafaei, M. ve Saeidi P. (2022). Responsive architecture solutions to reduce energy consumption of high-rise buildings. International Journal of Architectural Engineering & Urban Planning (IJAUP), 32(3). doi: 10.22068/ijaup.679

UYARLANABİLİR KİNETİK CEPHE SİSTEMLERİNİN GÖMÜLÜ ENERJİ BAĞLAMINDA İNCELENMESİ: KİEFER TEKNİK GALERİSİ

Year 2023, Volume: 4 Issue: 2, 90 - 103, 31.12.2023
https://doi.org/10.58317/eksen.1318707

Abstract

21. yüzyıl mimarlık pratiğinde yapıların kullanım enerjilerini %50 oranında düşürebilen uyarlanabilir kinetik cephe sistemleri (UKCS) ön plana çıkmaktadır. Literatürde çoğunlukla kullanım enerjileri üzerinden incelenen bu sistemlerin sahip oldukları gömülü enerjiler bağlamında kısıtlı sayıda çalışma bulunmaktadır. Çalışma kapsamında sürdürülebilir bir yaklaşımın geliştirilebilmesi için UKCS’lerin performans değerleri yitirilmeden gömülü enerjilerinin değerlendirilmesi ve azaltılması amaçlanmıştır. Bu bağlamda diğer malzemelere göre daha yüksek gömülü enerjiye sahip olan alüminyum ve paslanmaz çelik gibi malzemelerden imal edilmiş bileşenlerin aynı seviyede performans değerlerini sağlayabilecek ahşap esaslı malzemeler gibi gömülü enerjisi görece daha düşük olan malzemeler ile değiştirildiği varsayılmıştır. Konunun sayısal veriler üzerinden incelenebilmesi için bir yapı cephesi değerlendirilmiştir. Yapı seçimi konusunda gömülü enerji bakımından cephenin hangi malzemeden üretilmiş olduğuna ve güvenlik açısından da cephenin yüksekliğine dikkat edilmiştir. Bu koşullara uyan Kiefer Teknik Galerisi UKCS’si çalışma kapsamında incelenmiştir. Cephe sistemi alüminyum paneller, alüminyum raylar, paslanmaz çelik konsollar ve paslanmaz çelik ızgaralar olmak üzere dört temel bileşene ayrılmıştır. Bu dört bileşenin toplam gömülü enerjileri literatürdeki teknik çizimler, bilgiler ve fotoğraflar aracılığı ile hesaplanmıştır. Avrupa Standartlarına (EN 15804:2012) göre UKCS’nin hammadde temini için gereken enerji (raw material supply, A1) tespit edilmiştir. Elde edilen veriler ile UKCS tasarımında gömülü enerjiyi azaltabilmenin yolları, alternatif malzemeler ve detaylandırma prensipleri ile tartışılmış ve bir detay önerilmiştir. Önerilen detay sayesinde UKCS’nin toplam gömülü enerjisinin % 52 oranında düşürülebileceği hesaplanmıştır. Bu sayede tasarım aşamasında yalnızca malzeme tercihleri değiştirilerek UKCS’lerin gömülü enerjilerinin düşürülebileceği ve UKCS tasarımlarında performans verileri göz önünde tutularak malzeme nitelikleri ve malzemelerin gömülü enerjilerine dikkat edilmesinin önemi vurgulanmıştır.

References

  • Abediniangerabi, B., Shahandashti, S. M. ve Makhmalbaf, A. (2020). A data-driven framework for energy-conscious design of building facade systems. Journal of Building Engineering, 29, 101172. doi:10.1016/j.jobe.2020.101172
  • Almusaed, A., Yitmen, I., Almsaad, A., Akiner, İ. ve Akiner, M.E. (2021). Coherent investigation on a smart kinetic wooden façade based on material passport concepts and environmental profile inquiry. Materials, 14(14), 3771. doi:10.3390/ma14143771
  • Alotaibi, F. (2015). The role of kinetic envelopes to improve energy performance in buildings. Journal of Architectural Engineering Technology, 4(3). doi:10.4172/2168-9717.1000149
  • Attia, S. (2017). Evaluation of adaptive facades: The case study of Al Bahr Towers in the UAE. QScience Connect, Special Issue on Shaping Qatar’s Sustainable Built Environment-Part I, 2. doi:10.5339/connect.2017.qgbc.6
  • Attia, S., Bilir, S., Safy, T., Struck, C., Loonen, R. ve Goia, F. (2018). Current trends and future challenges in the performance assessment of adaptive façade systems. Energy and Buildings, 179, 165-182. doi:10.1016/j.enbuild.2018.09.017
  • Bostancı, C. (2006). Akıllı kinetik güneş kontrol sistemi önerisi. (Yayımlanmamış Yüksek Lisans Tezi). Yıldız Teknik Üniversitesi, Fen Bilimleri Enstitüsü, İstanbul. Web adresinden 1 Ekim 2023 tarihinde erişildi: https://tez.yok.gov.tr/UlusalTezMerkezi/
  • Brand, S. (1995). How buildings learn. What happens after they’re built. New York: Penguin Books.
  • Cabeza, L.F., Barreneche, C., Miró, L., Morera, J.M., Bartolí, E. ve Fernandez, A.I. (2013). Low carbon and low embodied energy materials in buildings: A review. Renewable & Sustainable Energy Reviews, 23, 536-542. doi:10.1016/j.rser.2013.03.017
  • Cilento, K. (5 Eylül 2012). Al Bahar Towers responsive facade / Aedas. ArchDaily web adresinden 15 Mayıs 2023 tarihinde erişildi: https://www.archdaily.com/270592/al-bahar-towers-responsive-facade-aedas
  • Crespi, M. ve Persiani, S. G. L. (2019). Rethinking adaptive building skins from a life cycle assessment perspective. Journal of Facade Design and Engineering, 7(2), 21–43. doi:10.7480/jfde.2019.2.2467
  • Elghazi, Y., Wagdy, Y., Mohamed, S. ve Hassan, A. (2014). Daylighting driven design: Optimizing kaleidocycle facade for hot arid climate. BauSIM2014, Fifth German-Austrian IBPSA Conference (ss. 314-321). RWTH Aachen University. doi:10.13140/RG.2.1.3198.4408
  • Energy Education. (t.y.). Aluminum. Energy Education web adresinden 7 Mayıs 2023 tarihinde erişildi: https://energyeducation.ca/encyclopedia/Aluminum
  • Ernst Giselbrecht + Partner. (t.y.). Kiefer Teknik Galerisi’nin kat planları [Fotoğraf]. Ernst Giselbrecht + Partner web adresinden 30 Nisan 2023 tarihinde erişildi: https://www.giselbrecht.at/projekte/gewerbe_industriebauten/kiefer/index.html
  • European Standards EN 15804. (2012). Sustainability of construction works - Environmental product declarations - Core rules for the product category of construction products. European Committee for Standardization, Brüksel. ISBN 978 0 580 51585 9
  • Gündoğdu, E. ve Arslan, H. D. (2020). Mimaride enerji etkin cephe ve biyomimikri. Gazi University Journal of Science Part C: Design and Technology, 8(4), 922-935. doi:10.29109/gujsc.799424
  • Hildebrand, L. (2012). Embodied energy in façade design. 8th Internationales Fassadensymposium: Fassade2012 (ss. 64-75). Luzern. Web adresinden 1 Ekim 2023 tarihinde erişildi: https://repository.tudelft.nl/islandora/object/uuid%3A15b40e6f-cad1-48b2-9ca0-daf04e27b161
  • Holstov, A., Farmer, G. ve Bridgens, B. (2017). Sustainable materialisation of responsive architecture. Sustainability, 9(3), 435. doi:10.3390/su9030435
  • Karanouh, A. ve Kerber, E. (2015). Innovations in dynamic architecture. The Al-Bahr Towers design and delivery of complex facades. Journal of Facade Design and Engineering, 3(2), 185–221. doi:10.3233/FDE-150040
  • Lawson, B. (2006). Embodied energy of building materials. BDP Environment Design Guide, Pro 2, 1-5. doi:10.2307/26148351
  • Maden, F. (2023). Geleceğin mimarisi: Kinetik yapılar ve Mashrabiya tabanlı cephe tasarımı. Tasarım Kuram, 19(38), 98-114. doi:10.59215/tasarimkuram.2023.373
  • Megahed, N. (2017). Understanding kinetic architecture: Typology, classification, and design strategy. Architectural Engineering and Design Management, 13(2), 130-146. doi:10.1080/17452007.2016.1203676
  • Moloney, J. (2011). Designing kinetics for architectural facades: State change (1. basım). New York: Routledge. doi:10.4324/9780203814703
  • One Ocean Thematic Pavilion. (22 Mayıs 2012). One Ocean Thematic Pavilion [Fotoğraf]. ArchDaily web adresinden 15 Mayıs 2023 tarihinde erişildi: https://www.archdaily.com/236979/one-ocean-thematic-pavilion-expo-2012-som
  • Preto, S. (2020). Dynamic facades: Optimization of natural light at workplaces. J. Charytonowicz ve C. Falcão (Der.), Advances in Human Factors in Architecture, Sustainable Urban Planning and Infrastructure, AHFE 2019, Advances in Intelligent Systems and Computing, 966 (ss. 392-402). Cham: Springer. doi:10.1007/978-3-030-20151-7_37
  • Q1 ThyssenKrupp Quarter. (4 Şubat 2013). Q1 ThyssenKrupp Quarter [Fotoğraf]. ArchDaily web adresinden 15 Mayıs 2023 tarihinde erişildi: https://www.archdaily.com/326747/q1-thyssenkrupp-quarter-essen-jswd-architekten-chaix-morel-et-associes
  • Quintáns, C. (21 Mart 2015). Kiefer Teknik Galerisi cephesinin sistem kesiti [Fotoğraf]. Tectónica web adresinden 15 Mayıs 2023 tarihinde erişildi: https://tectonica.archi/articles/showroom-kiefer-technic/
  • Sartori, I. ve Hestnes, A. G. (2007). Energy use in the life cycle of conventional and low-energy buildings: A review article. Energy and Buildings, 39(3), 249–257. doi:10.1016/j.enbuild.2006.07.001
  • Schielke, T. (29 Mayıs 2014). Arap Dünya Enstitüsü ve Al Bahr Kuleleri [Fotoğraf]. ArchDaily web adresinden 28 Mayıs 2023 tarihinde erişildi: https://www.archdaily.com/510226/light-matters-mashrabiyas-translating-tradition-into-dynamic-facades
  • Schumacher, M., Schaeffer, O. ve Vogt, M. M. (2010). MOVE: Architecture in motion. Dynamic components and elements. Basel: Birkhäuser. ISBN 978-3-7643-9986-3
  • SGG (Saint-Gobain Glass) ve ARUP. (2022). Carbon footprint of façades: Significance of glass. Findings from the life cycle assessment of 16 façade typologies & 18,000 design simulations. Temmuz 2022 Raporu. https://www.saint-gobain-glass.com/carbon-footprint-facades-significance-glass
  • Sheikh, W. T. ve Asghar, Q. (2019). Adaptive biomimetic facades: Enhancing energy efficiency of highly glazed buildings. Frontiers of Architectural Research, 8(3), 319-331. doi:10.1016/j.foar.2019.06.001
  • Tabadkani, A., Valinejad Shoubi, M., Soflaei, F. ve Banihashemi, S. (2019). Integrated parametric design of adaptive facades for user’s visual comfort. Automation in Construction, 106, 102857. doi:10.1016/j.autcon.2019.102857
  • Thyssenkrupp. (t.y.). Density of aluminium. Thyssenkrupp web adresinden 7 Mayıs 2023 tarihinde erişildi: https://www.thyssenkrupp-materials.co.uk/density-of-aluminium.html
  • Vinnitskaya, I. (17 Kasım 2010). Panellerin oluşturduğu koreografiler [Fotoğraf]. ArchDaily web adresinden 15 Mayıs 2023 tarihinde erişildi: https://www.archdaily.com/89270/kiefer-technic-showroom-ernst-giselbrecht-partner
  • Wellington Yapı Performansı Araştırma Merkezi. (t.y.). Embodied energy coefficients. Victoria University of Wellington web adresinden 1 Ekim 2023 tarihinde erişildi: https://www.wgtn.ac.nz/architecture/centres/cbpr/resources/pdfs/ee-coefficients.pdf
  • World material. (t.y.). Weight & density of stainless steel. World material web adresinden 1 Mayıs 2023 tarihinde erişildi: https://www.theworldmaterial.com/weight-density-of-stainless-steel/
  • WPIF (Wood Panel Industries Federation). (2014). Density of playwood. WPIF web adresinden 1 Ekim 2023 tarihinde erişildi: https://wpif.org.uk/uploads/PanelGuide/PanelGuide_2014_Annex2D.pdf
  • Zolfagharpour, A., Shafaei, M. ve Saeidi P. (2022). Responsive architecture solutions to reduce energy consumption of high-rise buildings. International Journal of Architectural Engineering & Urban Planning (IJAUP), 32(3). doi: 10.22068/ijaup.679
There are 38 citations in total.

Details

Primary Language Turkish
Subjects Materials and Technology in Architecture, Sustainable Architecture
Journal Section Research Articles
Authors

Çetin Süalp 0000-0002-1227-7774

Saniye Karaman Öztaş 0000-0003-1955-0013

Nilay Coşgun 0000-0001-5874-3331

Publication Date December 31, 2023
Published in Issue Year 2023 Volume: 4 Issue: 2

Cite

APA Süalp, Ç., Karaman Öztaş, S., & Coşgun, N. (2023). UYARLANABİLİR KİNETİK CEPHE SİSTEMLERİNİN GÖMÜLÜ ENERJİ BAĞLAMINDA İNCELENMESİ: KİEFER TEKNİK GALERİSİ. EKSEN Dokuz Eylül Üniversitesi Mimarlık Fakültesi Dergisi, 4(2), 90-103. https://doi.org/10.58317/eksen.1318707