Research Article
BibTex RIS Cite

MUSIC Algorithm for Respiratory Rate Estimation Using RF Signals

Year 2018, Volume: 18 Issue: 2, 300 - 309, 03.08.2018

Abstract

DOI: 10.26650/electrica.2018.03405


Continuous monitoring of respiratory rate (cycle) during sleep for diseases such as sleep apnea and sudden infant death syndrome (SIDS) can be lifesaving. Wireless radio communications signals are everywhere and can be harnessed for contactless monitoring of the respiratory rates. The amplitude of the received signal strength changes periodically depending on the exhalation and inhalation of the subject. In this paper, subspace-based multiple signal classification (MUSIC) algorithm is applied to estimate the respiratory rate for better results. The proposed method and the other power spectral density (PSD) methods for respiratory estimations are compared with the real laboratory measurements. It is demonstrated that the proposed method estimates the respiratory rate with high accuracy and outperforms the other PSD-based methods which are commonly used in the literature.

References

  • 1. M. Younes, “Role of respiratory control mechanisms in the pathogenesis of obstructive sleep disorders”, J Appl Physiol (1985), vol. 105, no. 5, pp. 1389-1405, 2008. 2. A. N. Vgontzas, A. Kales, “Sleep and its disorders”, Annu Rev Med, vol. 50, pp. 387-400, 1999. 3. T. Rantonen, J. Jalonen, J. Grönlund, K. Antila, D. Southall, I. Välimäki, “Increased amplitude modulation of continuous respiration precedes sudden infant death syndrome -Detection by spectral estimation of respirogram”, Early Human Development, vol. 53, no. 1, pp. 53-63, 1998. 4. F. Q. AL-Khalidi, R. Saatchi, D. Burke, H. Elphick, S. Tan, “Respiration rate monitoring methods: A review”, Pediatr Pulmonol, vol. 46, no. 6. pp. 523-529, 2011. 5. W. Karlen, C. J. Brouse, E. Cooke, J. M. Ansermino, G. A. Dumont, “Respiratory rate estimation using respiratory sinus arrhythmia from photoplethysmography”, Annual International Conference of the IEEE Engineering in Medicine and Biology Society, 2011. 6. A. Gaucher, D. Frasca, O. Mimoz, B. Debaene, “Accuracy of respiratory rate monitoring by capnometry using the Capnomask® in extubated patients receiving supplemental oxygen after surgery”, Br J Anaesth, vol. 108, no. 2, pp. 316-320, 2012. 7. Y. Nam, B. A. Reyes, K. H. Chon, “Estimation of Respiratory Rates Using the Built-in Microphone of a Smartphone or Headset”, IEEE J Biomed Health Inform, vol. 20, no. 6. pp. 1493-1501, 2016. 8. P. Corbishley, E. Rodríguez-Villegas, “Breathing detection: Towards a miniaturized, wearable, battery-operated monitoring system”, IEEE Trans Biomed Eng, vol. 55, no. 1, pp. 196-204, 2008. 9. J. Hernandez, D. McDuff, R. Picard, “BioWatch: Estimation of Heart and Breathing Rates from Wrist Motions”, EAI Endorsed Transactions on Pervasive Health and Technology, vol. 15, no. 3, 2015. 10. M. Bartula, T. Tigges, J. Muehlsteff, “Camera-based system for contactless monitoring of respiration”, 35th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), 2013, pp. 2672-2675. 11. K. Nakajim, Y. Matsumoto, T. Tamura, “Development of real-time image sequence analysis for evaluating posture change and respiratory rate of a subject in bed”, Physiol Meas, vol. 22, no. 3, pp. 21-28, 2001. 12. K. S. Tan, R. Saatchi, H. Elphick, D. Burke, “Real-time vision based respiration monitoring system”, 7th International Symposium on Communication Systems, Networks & Digital Signal Processing (CSNDSP 2010), pp. 770-774, 2010. 13. A. Lazaro, D. Girbau, R. Villarino, “Analysis of Vital Signs Monitoring Using an IR-UWB Radar”, Prog Electromagn Res, vol. 100, pp. 265-284, 2010. 14. A. D. Droitcour, O. Boric-Lubecke, G. T. A. Kovacs, “Signal-to-Noise Ratio in Doppler Radar System for Heart and Respiratory Rate Measurements”, IEEE Transactions on Microwave Theory and Techniques, vol. 57, no. 10. pp. 2498-2507, 2009. 15. C. Li, J. Ling, J. Li, J. Lin, “Accurate doppler radar noncontact vital sign detection using the RELAX algorithm”, IEEE Transactions on Instrumentation and Measurement , vol. 59, no. 3, pp. 687-695, 2010. 16. M. Ascione, A. Buonanno, M. D’Urso, L. Angrisani, R. S. Lo Moriello, “A new measurement method based on music algorithm for through-the-wall detection of life signs”, IEEE Transactions on Instrumentation and Measurement, vol. 62, no. 1. pp. 13-26, 2013. 17. C. Li, J. Lin, “Recent advances in Doppler radar sensors for pervasive healthcare monitoring”, Asia-Pacific Microwave Conference (APMC), 2010, pp. 283-290. 18. R. Schmidt, “Multiple emitter location and signal parameter estimation”, IEEE Trans. Antennas Propag, vol. 34, no. 3, pp. 276-280, Mar. 1986. 19. N. Patwari, J. Wilson, S. Ananthanarayanan, S. K. Kasera, D. R. Westenskow, “Monitoring breathing via signal strength in wireless networks”, IEEE Transactions on Mobile Computing, vol. 13, no. 8, pp. 1774-1786, 2014. 20. X. Liu, J. Cao, S. Tang, J. Wen, P. Guo, “Contactless Respiration Monitoring Via Off-the-Shelf WiFi Devices”, IEEE Transactions on Mobile Computing, vol. 15, no. 10. pp. 2466-2479, 2016. 21. O. Kaltiokallio, H. Yiğitler, R. Jäntti, and N. Patwari, “Non-invasive respiration rate monitoring using a single COTS TX-RX pair,” IPSN 2014 - Proceedings of the 13th International Symposium on Information Processing in Sensor Networks, 2014, pp. 59-69, 22. F. Adib, H. Mao, Z. Kabelac, D. Katabi, R. C. Miller, “Smart Homes that Monitor Breathing and Heart Rate”, Proceedings of the 33rd Annual ACM Conference on Human Factors in Computing Systems, pp. 837-846, 2015. 23. J. Liu, Y. Wang, Y. Chen, J. Yang, X. Chen, J. Cheng, “Tracking Vital Signs During Sleep Leveraging Off-the-shelf WiFi,” Proceedings of the 16th ACM International Symposium on Mobile Ad Hoc Networking and Computing, pp. 267-276, 2015. 24. H. Abdelnasser, K. A. Harras, M. Youssef, “UbiBreathe: A Ubiquitous non-invasive WiFi-based Breathing Estimator”, Proceedings of the 16th ACM International Symposium on Mobile Ad Hoc Networking and Computing, pp. 277-286, 2015 25. R. Ravichandran, E. Saba, K. Y. Chen, M. Goel, S. Gupta, S. N. Patel, “WiBreathe: Estimating respiration rate using wireless signals in natural settings in the home”, IEEE International Conference on Pervasive Computing and Communications (PerCom), 2015, pp. 131-139, 2015. 26. C. Wu, Z. Yang, Z. Zhou, X. Liu, Y. Liu, J. Cao, “Non-invasive detection of moving and stationary human with WiFi,” IEEE Journal on Selected Areas in Communications, vol. 33, no. 11, pp. 2329-2342, 2015. 27. H. Wang, D. Zhang, J. Ma, Yasha Wang, Yuxiang Wang, D. Wu, T. Gu, B. Xie, “Human respiration detection with commodity wifi devices: Do User Location and Body Orientation Matter?”, Proceedings of the 2016 ACM International Joint Conference on Pervasive and Ubiquitous Computing, 2016, pp. 25-36. 28. C. Uysal and T. Filik, “Contactless respiration rate estimation using MUSIC algorithm,” in Electrical and Electronics Engineering (ELECO), 2017 10th International Conference on, 2017, pp. 606-610. 29. Z. Yang, Z. Zhou, Y. Liu, “From RSSI to CSI”, ACM Computing Surveys (CSUR), vol. 46, no. 2, pp. 1-32, 2013. 30. S. Venkatesh, C. R. Anderson, N. V. Rivera, R. M. Buehrer, “Implementation and analysis of respiration-rate estimation using impulse-based UWB”, IEEE Military Communications Conference, 2005. 31. C. Lowanichkiattikul, M. Dhanachai, C. Sitathanee, S. Khachonkham, and P. Khaothong, “Impact of chest wall motion caused by respiration in adjuvant radiotherapy for postoperative breast cancer patients,” Springerplus, vol. 5, no. 1, pp. 1-8, 2016. 32. L. Davies and U. Gather, “The identification of multiple outliers”, J Am Stat Assoc, vol. 88, no. 423, pp. 782-792, 1993.

MUSIC Algorithm for Respiratory Rate Estimation Using RF Signals

Year 2018, Volume: 18 Issue: 2, 300 - 309, 03.08.2018

Abstract

DOI: 10.26650/electrica.2018.03405


Continuous monitoring of respiratory rate
(cycle) during sleep for diseases such as sleep apnea and sudden infant death
syndrome (SIDS) can be lifesaving. Wireless radio communications signals are
everywhere and can be harnessed for contactless monitoring of the respiratory
rates. The amplitude of the received signal strength changes periodically
depending on the exhalation and inhalation of the subject. In this paper,
subspace-based multiple signal classification (MUSIC) algorithm is applied to
estimate the respiratory rate for better results. The proposed method and the
other power spectral density (PSD) methods for respiratory estimations are
compared with the real laboratory measurements. It is demonstrated that the
proposed method estimates the respiratory rate with high accuracy and
outperforms the other PSD-based methods which are commonly used in the
literature.

References

  • 1. M. Younes, “Role of respiratory control mechanisms in the pathogenesis of obstructive sleep disorders”, J Appl Physiol (1985), vol. 105, no. 5, pp. 1389-1405, 2008. 2. A. N. Vgontzas, A. Kales, “Sleep and its disorders”, Annu Rev Med, vol. 50, pp. 387-400, 1999. 3. T. Rantonen, J. Jalonen, J. Grönlund, K. Antila, D. Southall, I. Välimäki, “Increased amplitude modulation of continuous respiration precedes sudden infant death syndrome -Detection by spectral estimation of respirogram”, Early Human Development, vol. 53, no. 1, pp. 53-63, 1998. 4. F. Q. AL-Khalidi, R. Saatchi, D. Burke, H. Elphick, S. Tan, “Respiration rate monitoring methods: A review”, Pediatr Pulmonol, vol. 46, no. 6. pp. 523-529, 2011. 5. W. Karlen, C. J. Brouse, E. Cooke, J. M. Ansermino, G. A. Dumont, “Respiratory rate estimation using respiratory sinus arrhythmia from photoplethysmography”, Annual International Conference of the IEEE Engineering in Medicine and Biology Society, 2011. 6. A. Gaucher, D. Frasca, O. Mimoz, B. Debaene, “Accuracy of respiratory rate monitoring by capnometry using the Capnomask® in extubated patients receiving supplemental oxygen after surgery”, Br J Anaesth, vol. 108, no. 2, pp. 316-320, 2012. 7. Y. Nam, B. A. Reyes, K. H. Chon, “Estimation of Respiratory Rates Using the Built-in Microphone of a Smartphone or Headset”, IEEE J Biomed Health Inform, vol. 20, no. 6. pp. 1493-1501, 2016. 8. P. Corbishley, E. Rodríguez-Villegas, “Breathing detection: Towards a miniaturized, wearable, battery-operated monitoring system”, IEEE Trans Biomed Eng, vol. 55, no. 1, pp. 196-204, 2008. 9. J. Hernandez, D. McDuff, R. Picard, “BioWatch: Estimation of Heart and Breathing Rates from Wrist Motions”, EAI Endorsed Transactions on Pervasive Health and Technology, vol. 15, no. 3, 2015. 10. M. Bartula, T. Tigges, J. Muehlsteff, “Camera-based system for contactless monitoring of respiration”, 35th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), 2013, pp. 2672-2675. 11. K. Nakajim, Y. Matsumoto, T. Tamura, “Development of real-time image sequence analysis for evaluating posture change and respiratory rate of a subject in bed”, Physiol Meas, vol. 22, no. 3, pp. 21-28, 2001. 12. K. S. Tan, R. Saatchi, H. Elphick, D. Burke, “Real-time vision based respiration monitoring system”, 7th International Symposium on Communication Systems, Networks & Digital Signal Processing (CSNDSP 2010), pp. 770-774, 2010. 13. A. Lazaro, D. Girbau, R. Villarino, “Analysis of Vital Signs Monitoring Using an IR-UWB Radar”, Prog Electromagn Res, vol. 100, pp. 265-284, 2010. 14. A. D. Droitcour, O. Boric-Lubecke, G. T. A. Kovacs, “Signal-to-Noise Ratio in Doppler Radar System for Heart and Respiratory Rate Measurements”, IEEE Transactions on Microwave Theory and Techniques, vol. 57, no. 10. pp. 2498-2507, 2009. 15. C. Li, J. Ling, J. Li, J. Lin, “Accurate doppler radar noncontact vital sign detection using the RELAX algorithm”, IEEE Transactions on Instrumentation and Measurement , vol. 59, no. 3, pp. 687-695, 2010. 16. M. Ascione, A. Buonanno, M. D’Urso, L. Angrisani, R. S. Lo Moriello, “A new measurement method based on music algorithm for through-the-wall detection of life signs”, IEEE Transactions on Instrumentation and Measurement, vol. 62, no. 1. pp. 13-26, 2013. 17. C. Li, J. Lin, “Recent advances in Doppler radar sensors for pervasive healthcare monitoring”, Asia-Pacific Microwave Conference (APMC), 2010, pp. 283-290. 18. R. Schmidt, “Multiple emitter location and signal parameter estimation”, IEEE Trans. Antennas Propag, vol. 34, no. 3, pp. 276-280, Mar. 1986. 19. N. Patwari, J. Wilson, S. Ananthanarayanan, S. K. Kasera, D. R. Westenskow, “Monitoring breathing via signal strength in wireless networks”, IEEE Transactions on Mobile Computing, vol. 13, no. 8, pp. 1774-1786, 2014. 20. X. Liu, J. Cao, S. Tang, J. Wen, P. Guo, “Contactless Respiration Monitoring Via Off-the-Shelf WiFi Devices”, IEEE Transactions on Mobile Computing, vol. 15, no. 10. pp. 2466-2479, 2016. 21. O. Kaltiokallio, H. Yiğitler, R. Jäntti, and N. Patwari, “Non-invasive respiration rate monitoring using a single COTS TX-RX pair,” IPSN 2014 - Proceedings of the 13th International Symposium on Information Processing in Sensor Networks, 2014, pp. 59-69, 22. F. Adib, H. Mao, Z. Kabelac, D. Katabi, R. C. Miller, “Smart Homes that Monitor Breathing and Heart Rate”, Proceedings of the 33rd Annual ACM Conference on Human Factors in Computing Systems, pp. 837-846, 2015. 23. J. Liu, Y. Wang, Y. Chen, J. Yang, X. Chen, J. Cheng, “Tracking Vital Signs During Sleep Leveraging Off-the-shelf WiFi,” Proceedings of the 16th ACM International Symposium on Mobile Ad Hoc Networking and Computing, pp. 267-276, 2015. 24. H. Abdelnasser, K. A. Harras, M. Youssef, “UbiBreathe: A Ubiquitous non-invasive WiFi-based Breathing Estimator”, Proceedings of the 16th ACM International Symposium on Mobile Ad Hoc Networking and Computing, pp. 277-286, 2015 25. R. Ravichandran, E. Saba, K. Y. Chen, M. Goel, S. Gupta, S. N. Patel, “WiBreathe: Estimating respiration rate using wireless signals in natural settings in the home”, IEEE International Conference on Pervasive Computing and Communications (PerCom), 2015, pp. 131-139, 2015. 26. C. Wu, Z. Yang, Z. Zhou, X. Liu, Y. Liu, J. Cao, “Non-invasive detection of moving and stationary human with WiFi,” IEEE Journal on Selected Areas in Communications, vol. 33, no. 11, pp. 2329-2342, 2015. 27. H. Wang, D. Zhang, J. Ma, Yasha Wang, Yuxiang Wang, D. Wu, T. Gu, B. Xie, “Human respiration detection with commodity wifi devices: Do User Location and Body Orientation Matter?”, Proceedings of the 2016 ACM International Joint Conference on Pervasive and Ubiquitous Computing, 2016, pp. 25-36. 28. C. Uysal and T. Filik, “Contactless respiration rate estimation using MUSIC algorithm,” in Electrical and Electronics Engineering (ELECO), 2017 10th International Conference on, 2017, pp. 606-610. 29. Z. Yang, Z. Zhou, Y. Liu, “From RSSI to CSI”, ACM Computing Surveys (CSUR), vol. 46, no. 2, pp. 1-32, 2013. 30. S. Venkatesh, C. R. Anderson, N. V. Rivera, R. M. Buehrer, “Implementation and analysis of respiration-rate estimation using impulse-based UWB”, IEEE Military Communications Conference, 2005. 31. C. Lowanichkiattikul, M. Dhanachai, C. Sitathanee, S. Khachonkham, and P. Khaothong, “Impact of chest wall motion caused by respiration in adjuvant radiotherapy for postoperative breast cancer patients,” Springerplus, vol. 5, no. 1, pp. 1-8, 2016. 32. L. Davies and U. Gather, “The identification of multiple outliers”, J Am Stat Assoc, vol. 88, no. 423, pp. 782-792, 1993.
There are 1 citations in total.

Details

Primary Language English
Subjects Engineering
Journal Section Articles
Authors

Can Uysal This is me

Tansu Filik This is me

Publication Date August 3, 2018
Published in Issue Year 2018 Volume: 18 Issue: 2

Cite

APA Uysal, C., & Filik, T. (2018). MUSIC Algorithm for Respiratory Rate Estimation Using RF Signals. Electrica, 18(2), 300-309.
AMA Uysal C, Filik T. MUSIC Algorithm for Respiratory Rate Estimation Using RF Signals. Electrica. August 2018;18(2):300-309.
Chicago Uysal, Can, and Tansu Filik. “MUSIC Algorithm for Respiratory Rate Estimation Using RF Signals”. Electrica 18, no. 2 (August 2018): 300-309.
EndNote Uysal C, Filik T (August 1, 2018) MUSIC Algorithm for Respiratory Rate Estimation Using RF Signals. Electrica 18 2 300–309.
IEEE C. Uysal and T. Filik, “MUSIC Algorithm for Respiratory Rate Estimation Using RF Signals”, Electrica, vol. 18, no. 2, pp. 300–309, 2018.
ISNAD Uysal, Can - Filik, Tansu. “MUSIC Algorithm for Respiratory Rate Estimation Using RF Signals”. Electrica 18/2 (August 2018), 300-309.
JAMA Uysal C, Filik T. MUSIC Algorithm for Respiratory Rate Estimation Using RF Signals. Electrica. 2018;18:300–309.
MLA Uysal, Can and Tansu Filik. “MUSIC Algorithm for Respiratory Rate Estimation Using RF Signals”. Electrica, vol. 18, no. 2, 2018, pp. 300-9.
Vancouver Uysal C, Filik T. MUSIC Algorithm for Respiratory Rate Estimation Using RF Signals. Electrica. 2018;18(2):300-9.