Elektrikli Araç Şarj Kümelerinin Çok Temsilcili Sistem Yaklaşımıyla Enerji Yönetimi ve Şarj Koordinasyonu
Yıl 2024,
Cilt: 14 Sayı: 1, 7 - 17, 30.01.2024
Gülen Akyün
Erdem Gümrükçü
Murat Yilmaz
Öz
Bu çalışmada çok sayıda şarj ünitesi içeren elektrikli araç şarj istasyonları gibi araçtan-her şeye (V2X) özellikli kümelenmiş sistemlerin enerji yönetimi için temsilci tabanlı bir yaklaşım sunulmaktadır. Önerilen yaklaşımla, şarj kümelerinin yerel yük dengeleme yeteneklerini artırmak ve tepe/ortalama güç oranını azaltmak amaçlanmaktadır. Çok temsilcili bu sistemde, her temsilci bir enerji üreticisi veya tüketicisini temsil etmektedir. Araçların park süresine ve mevcut/hedef şarj durumlarına (SOC) göre, bağlı oldukları şarj ünitelerinin rolü tüketici veya üretici olarak güncellenmektedir. Temsilciler, belirli zamanda talep ettikleri veya sağlayabilecekleri gücü hesaplamakta ve birbirleriyle müzakere etmektedirler. Bu kapsamda müzakere protokolü ayrıntılı olarak sunulmuş ve yaklaşımın yerel yük dengeleme performansını göstermek için benzetişimler gerçekleştirilmiştir. Ayrıca, yaklaşımın farklı durumlar için performansını değerlendirmek üzere rastgele senaryolar üzerinden değerlendirmeleri de yapılmıştır.
Kaynakça
- [1] Lopes, J.P., Hatziargyriou, N., Mutale, J., Djapic, P. and Jenkins, N. (2007). Integrating distributed generation into electric power systems: A review of drivers, challenges and opportunities, Electric power systems research, 77(9), 1189–1203.
- [2] Kong, Q., Fowler, M., Entchev, E., Ribberink, H. and McCallum, R. (2018). The role of charging infrastructure in electric vehicle implementation within smart grids, Energies, 11(12), 3362.
- [3] Taljegard, M., Göransson, L., Odenberger, M. and Johnsson, F. (2019). Electric vehicles as flexibility management strategy for the electricity system—A comparison between different regions of Europe, Energies, 12(13), 2597.
- [4] S. Saxena, H. E. Z. Farag, L. S. Hilaire and A. Brookson, "A Techno-Social Approach to Unlocking Vehicle to Everything (V2X) Integration: A Real-World Demonstration," in IEEE Access, vol. 11, pp. 17085-17095, 2023,
- [5] Hussain, M.T., Sulaiman, N.B., Hussain, M.S. and Jabir, M. (2021). Optimal Management strategies to solve issues of grid having Electric Vehicles (EV): A review, Journal of Energy Storage, 33, 102114.
- [6] R.J., Matos, M.A., Soares, F.J. and Lopes, J.A.P. (2011). Optimized bidding of a EV aggregation agent in the electricity market, IEEE Transactions on Smart Grid, 3(1), 443–452.
- [7] Abdullah, H.M., Gastli, A. and Ben-Brahim, L. (2021). Reinforcement learning based EV charging management systems–a review, IEEE Access, 9, 41506–41531.
- [8] Mets, K., Verschueren, T., Haerick, W., Develder, C. and De Turck, F. (2010). Optimizing smart energy control strategies for plug-in hybrid electric vehicle charging, 2010 IEEE/IFIP network operations and management symposium workshops, IEEE, pp.293–299.
- [9] Yilmaz, M. and Krein, P.T. (2012). Review of the impact of vehicle-to-grid technologies on distribution systems and utility interfaces, IEEE Transactions on power electronics, 28(12), 5673–5689.
- [10] Pearre, N.S. and Ribberink, H. (2019). Review of research on V2X technologies, strategies, and operations, Renewable and Sustainable Energy Reviews, 105, 61–70.
- [11] Ravi, S.S. and Aziz, M. (2022). Utilization of electric vehicles for vehicle-to-grid services: progress and perspectives, Energies, 15(2), 589.
- [12] Hou, L., Dong, J., Herrera, O. E., & Mérida, W. (2023). Energy management for solar-hydrogen microgrids with vehicle-to-grid and power-to-gas transactions. International Journal of Hydrogen Energy, 48(5), 2013-2029.
- [13] Rathor, S.K. and Saxena, D. (2020). Energy management system for smart grid: An overview and key issues, International Journal of Energy Research, 44(6), 4067–4109.
- [14] Cheng, Z., Duan, J. and Chow, M.Y. (2018). To centralize or to distribute: That is the question: A comparison of advanced microgrid management systems, IEEE Industrial Electronics Magazine, 12(1), 6–24.
- [15] Yin, H., Alsabbagh, A. and Ma, C. (2021). A decentralized power dispatch strategy in an electric vehicle charging station, IET Electrical Systems in Transportation, 11(1), 25–35.
- [16] Ringler, P., Keles, D. and Fichtner, W. (2016). Agent-based modelling and simulation of smart electricity grids and markets–a literature review, Renewable and Sustainable Energy Reviews, 57, 205–215.
- [17] Unda, I.G., Papadopoulos, P., Skarvelis-Kazakos, S., Cipcigan, L.M., Jenkins, N. and Zabala, E. (2014). Management of electric vehicle battery charging in distribution networks with multi-agent systems, Electric Power Systems Research, 110, 172–179.
- [18] Mureddu, M., Scala, A., Chessa, A., Caldarelli, G., Musio, M. and Damiano, A. (2014). An agent based approach for the development of EV fleet Charging Strategies in Smart Cities, 2014 IEEE International Electric Vehicle Conference (IEVC), IEEE, pp.1–8.
- [19] Saner, C.B., Trivedi, A. and Srinivasan, D. (2022). A Cooperative Hierarchical Multi-Agent System for EV Charging Scheduling in Presence of Multiple Charging Stations, IEEE Transactions on Smart Grid, 13(3), 2218–2233.
- [20] Garau, M. and Torsæter, B.N. (2021). Agent-Based Analysis of Spatial Flexibility in EV Charging Demand at Public Fast Charging Stations, 2021 IEEE Madrid PowerTech, IEEE, pp.1–6.
- [21] Mocci, S., Natale, N., Ruggeri, S. and Pilo, F. (2014). Multi-agent control system for increasing hosting capacity in active distribution networks with EV, 2014 IEEE International Energy Conference (ENERGYCON), pp.1409–1416.
- [22] Aljohani, T., Ebrahim, A. and Mohammed, O. (2020). Dynamic real-time pricing structure for electric vehicle charging considering stochastic microgrids energy management system, 2020 IEEE International Conference on Environment and Electrical Engineering and 2020 IEEE Industrial and Commercial Power Systems Europe (EEEIC/I&CPS Europe), pp.1–8.
- [23] Valogianni, K., Ketter, W. and Collins, J. (2015). A multiagent approach to variable-rate electric vehicle charging coordination, Proceedings of the 2015 International Conference on Autonomous Agents and Multiagent Systems, pp.1131–1139.
- [24] Dähling, S., Kolen, S. and Monti, A. (2018). Swarm-based automation of electrical power distribution and transmission system support, IET Cyber-Physical Systems: Theory & Applications, 3(4), 212–223.
- [25] Kolen, S., Isermann, T., Dähling, S. and Monti, A. (2017). Swarm behavior for distribution grid control, 2017 IEEE PES Innovative Smart Grid Technologies Conference Europe (ISGT-Europe), pp.1–6.
- [26] Intelligent Physical Agents Foundation- FIPA, http://www.fipa.org/, (Erişim zamanı; Nisan, 18, 2023).