Deflection analysis of functionally graded equal strength beams
Year 2022,
, 119 - 128, 26.06.2022
Mustafa Halûk Saraçoğlu
,
Gökhan Güçlü
Fethullah Uslu
Abstract
In this study, equal strength cantilever and simply supported beams made of functionally graded material (FGM) whose material properties vary though the height direction were investigated. These equal strength cantilever FGM beams were loaded with uniformly distributed load and a point load at the tip and simply supported FGM beams were loaded with uniformly distributed loads. They have all variable cross-section and straight axis. For calculating equivalent material properties of FGMs, power law distribution and Mori-Tanaka model were used. A computer program was developed for the analysis of the problem. The dimensionless deflection values for cantilever beams and simply supported beams were obtained for different materials by the help of developed computer program. Obtained results are presented in the form of tables and graphs which may be useful for the researchers.
References
- İnan, M., (2001). Cisimlerin Mukavemeti. 8.bs., İstanbul: İTÜ Vakfı.
- Bakioğlu, M., (2009). Cisimlerin mukavemeti. 2.bs., Birsen Yayınevi.
- Özarslan, O., (2007). Fonksiyonel derecelendirilmiş bir plağın analizi. Yüksek Lisans Tezi, İstanbul Teknik Üniversitesi, (2007).
- Ersan, Ç., (2008). Fonksiyonel derecelendirilmiş disklerde termal gerilme analizi. Yüksek Lisans Tezi, Pamukkale Üniversitesi, (2008).
- Kadoli Ravikiran, A.K., (2008). Static analysis of functionally graded beams using higher order shear deformation theory. Applied Mathematical Modelling. 32: 2509–25. doi: 10.1016/j.apm.2007.09.015.
- Chauhan, P.K., Khan, I.A., (2014). Review on Analysis of Functionally Graded Material Beam Type Structure. International Journal of Advanced Mechanical Engineering. 4(3): 299–306.
- Alagöz, H., Güleç, M., Konez, A., (2004). Fonksyionel derecelendirilmiş malzemeler ve kullanim alanları. Mühendis ve Makina. 45(5): 25–32.
- Arslan, T.A., Noori, A.R., Temel, B., (2019). Çift Yönlü Fonksiyonel Derecelendirilmiş Malzemeli Timoshenko Kirişlerinin Serbest Titreşim Analizi. 21. Ulusal Mekanik Kongresi, p. 218–25.
- Sınır, S., Çevik, M., (2017). Eksenel Olarak Polinomiyal Fonksiyonel Derecelendirilmiş Malzemeden Nonlineer Euler-Bernoulli Kirişinin Serbest Titreşim Analizi. 20. Ulusal Mekanik Kongresi, p. 706–21.
- Çalım, F.F., (2017). Eksenel Fonksiyonel Derecelendirilmiş Değişken Kesitli Kirişlerin Serbest Titreşimi. 20. Ulusal Mekanik Kongresi, p. 84–91.
- Saraçoğlu, M.H., Güçlü, G., Uslu, F., (2019). Static Analysis of Orthotropic Euler-Bernoulli and Timoshenko Beams With Respect to Various Parameters. Bitlis Eren Üniversitesi Fen Bilimleri Dergisi. 8(2): 628–41.
- İpci, D., (2014). Fonksiyonel Derecelendirilmiş Konik Kesitli Mikro - Kirişlerin Serbest Titreşim Analizi. Yüksek Lisans Tezi, Hacettepe Üniversitesi, (2014).
- Chi, S.H., Chung, Y.L., (2006). Mechanical behavior of functionally graded material plates under transverse load—Part I: Analysis. International Journal of Solids and Structures. 43(13): 3657–74. doi: 10.1016/J.IJSOLSTR.2005.04.011.
- Elishakoff, I., Demetris Pentaras, C.G., (2016). Mechanics of Functionally Graded Material Structures. World Scientific Publishing Co. Pte. Ltd. 5.
- Reiter, T., Dvorak, G.J., Tvergaard, V., (1997). Micromechanical models for graded composite materials. Journal of the Mechanics and Physics of Solids. 45(8): 1281–302. doi: 10.1016/S0022-5096(97)00007-0.
- Saraçoğlu, M.H., Güçlü, G., Uslu, F., (2017). Ortotrop Kirişlerin Farklı Kiriş Teorileri ile Statik Analizi. 20. Ulusal Mekanik Kongresi, p. 351–61.
- Reddy, J.N., Chin, C.D., (2007). Thermomechanical Analysis of Functionally Graded Cylinders and Plates. Journal of Thermal Stresses. 21(6): 593–626. doi: 10.1080/01495739808956165.
- Shen, H.-S., (2009). Functionally Graded Materials. Boca Raton: CRC Press.
- Kirlangiç, O., Akbaş, Ş.D., (2020). Comparison study between layered and functionally graded composite beams for static deflection and stress analyses. Journal of Computational Applied Mechanics. 51(2): 294–301. doi: 10.22059/JCAMECH.2020.296319.473.
- Sahu, A., Pradhan, N., Sarangi, S.K., (2020). Static and Dynamic Analysis of Smart Functionally Graded Beams. Materials Today: Proceedings. 24: 1618–25. doi: 10.1016/j.matpr.2020.04.483.
- Şimşek, M., Al-shujairi, M., (2017). Static , free and forced vibration of functionally graded ( FG ) sandwich beams excited by two successive moving harmonic loads. Composites Part B. 108: 18–34. doi: 10.1016/j.compositesb.2016.09.098.
- Banks-Sills, L., Eliasi, R., Berlin, Y., (2002). Vibration Characteristics of Functionally Graded Material Skew Plate in Thermal Environment. Composites: Part B. 33: 7–15.
Year 2022,
, 119 - 128, 26.06.2022
Mustafa Halûk Saraçoğlu
,
Gökhan Güçlü
Fethullah Uslu
References
- İnan, M., (2001). Cisimlerin Mukavemeti. 8.bs., İstanbul: İTÜ Vakfı.
- Bakioğlu, M., (2009). Cisimlerin mukavemeti. 2.bs., Birsen Yayınevi.
- Özarslan, O., (2007). Fonksiyonel derecelendirilmiş bir plağın analizi. Yüksek Lisans Tezi, İstanbul Teknik Üniversitesi, (2007).
- Ersan, Ç., (2008). Fonksiyonel derecelendirilmiş disklerde termal gerilme analizi. Yüksek Lisans Tezi, Pamukkale Üniversitesi, (2008).
- Kadoli Ravikiran, A.K., (2008). Static analysis of functionally graded beams using higher order shear deformation theory. Applied Mathematical Modelling. 32: 2509–25. doi: 10.1016/j.apm.2007.09.015.
- Chauhan, P.K., Khan, I.A., (2014). Review on Analysis of Functionally Graded Material Beam Type Structure. International Journal of Advanced Mechanical Engineering. 4(3): 299–306.
- Alagöz, H., Güleç, M., Konez, A., (2004). Fonksyionel derecelendirilmiş malzemeler ve kullanim alanları. Mühendis ve Makina. 45(5): 25–32.
- Arslan, T.A., Noori, A.R., Temel, B., (2019). Çift Yönlü Fonksiyonel Derecelendirilmiş Malzemeli Timoshenko Kirişlerinin Serbest Titreşim Analizi. 21. Ulusal Mekanik Kongresi, p. 218–25.
- Sınır, S., Çevik, M., (2017). Eksenel Olarak Polinomiyal Fonksiyonel Derecelendirilmiş Malzemeden Nonlineer Euler-Bernoulli Kirişinin Serbest Titreşim Analizi. 20. Ulusal Mekanik Kongresi, p. 706–21.
- Çalım, F.F., (2017). Eksenel Fonksiyonel Derecelendirilmiş Değişken Kesitli Kirişlerin Serbest Titreşimi. 20. Ulusal Mekanik Kongresi, p. 84–91.
- Saraçoğlu, M.H., Güçlü, G., Uslu, F., (2019). Static Analysis of Orthotropic Euler-Bernoulli and Timoshenko Beams With Respect to Various Parameters. Bitlis Eren Üniversitesi Fen Bilimleri Dergisi. 8(2): 628–41.
- İpci, D., (2014). Fonksiyonel Derecelendirilmiş Konik Kesitli Mikro - Kirişlerin Serbest Titreşim Analizi. Yüksek Lisans Tezi, Hacettepe Üniversitesi, (2014).
- Chi, S.H., Chung, Y.L., (2006). Mechanical behavior of functionally graded material plates under transverse load—Part I: Analysis. International Journal of Solids and Structures. 43(13): 3657–74. doi: 10.1016/J.IJSOLSTR.2005.04.011.
- Elishakoff, I., Demetris Pentaras, C.G., (2016). Mechanics of Functionally Graded Material Structures. World Scientific Publishing Co. Pte. Ltd. 5.
- Reiter, T., Dvorak, G.J., Tvergaard, V., (1997). Micromechanical models for graded composite materials. Journal of the Mechanics and Physics of Solids. 45(8): 1281–302. doi: 10.1016/S0022-5096(97)00007-0.
- Saraçoğlu, M.H., Güçlü, G., Uslu, F., (2017). Ortotrop Kirişlerin Farklı Kiriş Teorileri ile Statik Analizi. 20. Ulusal Mekanik Kongresi, p. 351–61.
- Reddy, J.N., Chin, C.D., (2007). Thermomechanical Analysis of Functionally Graded Cylinders and Plates. Journal of Thermal Stresses. 21(6): 593–626. doi: 10.1080/01495739808956165.
- Shen, H.-S., (2009). Functionally Graded Materials. Boca Raton: CRC Press.
- Kirlangiç, O., Akbaş, Ş.D., (2020). Comparison study between layered and functionally graded composite beams for static deflection and stress analyses. Journal of Computational Applied Mechanics. 51(2): 294–301. doi: 10.22059/JCAMECH.2020.296319.473.
- Sahu, A., Pradhan, N., Sarangi, S.K., (2020). Static and Dynamic Analysis of Smart Functionally Graded Beams. Materials Today: Proceedings. 24: 1618–25. doi: 10.1016/j.matpr.2020.04.483.
- Şimşek, M., Al-shujairi, M., (2017). Static , free and forced vibration of functionally graded ( FG ) sandwich beams excited by two successive moving harmonic loads. Composites Part B. 108: 18–34. doi: 10.1016/j.compositesb.2016.09.098.
- Banks-Sills, L., Eliasi, R., Berlin, Y., (2002). Vibration Characteristics of Functionally Graded Material Skew Plate in Thermal Environment. Composites: Part B. 33: 7–15.