Research Article
BibTex RIS Cite

Volume fraction of retained austenite in 1.2842 tool steel as a function of tempering temperature

Year 2022, , 263 - 268, 20.12.2022
https://doi.org/10.26701/ems.1186751

Abstract

Untransformed austenite during quenching process is known as retained austeinite. The quantitative determination of the retained austenite is of great importance to the steel mechanical properties. Its percentage has a large effect on the mechanical properties and service life of components. The amount of retained austenite in through-hardened tool steels should be kept at its optimum level in order to minimize size change, and increase service life. In this study, the influence of tempering temperature on the amount of retained austenite was evaluated by using X-ray diffraction phase analyses. It was seen that tempering at low temperatures resulted in small amount of retained austenite for the studied steel.

Supporting Institution

Cukurova University

Project Number

MMF2012YL15

Thanks

The authors would like to thank the Scientific Research Projects Coordination Unit (BAP) of Cukurova University in Adana, Turkey for the financial support provided. Project No: MMF2012YL15

References

  • 1. Broyson ,W.E. (2015), Heat treatment, selection, and application of tool steels 2nd ed., Hanser Publishers, Munich. 2. Li, J., Feng Y., Tang, L., Wu, X. (2013), FEM prediction of retained austenite evolution in cold work die steel during deep cryogenic treatment, Materials Letters, 100,. 274-277, DOI:10.1016/j.matlet.2013.03.046 3. Vander, G. F. (2009), Martensite & retained austenite, Industrial Heating, 76, 51-52
  • 4. Wiewiorowska, S., Muskalski, Z. (2016), Effect of the die approach zone shape on the transition of retained austenite and the mechanical properties of TRIP steel wires, Materials Testing, 58, No. 4, pp. 302-305, DOI:10.3139/120.110852
  • 5. Abdulkareem, N.M., Jabbar, M.A. (2017), Micro-structure and Mechanical Properties of AI-SI4340 High Strength Low Alloy Steel (HSLA steel) Using Magnetic Saturation Measurement and X-Ray Diffraction methods, Basrah Journal for Engineering Sciences, 17(2) , 1-8
  • 6. Zhang, M.X., Kelly, Bekessy, L.K., Gates, J.D. (2000), Determination of retained austenite using an X-ray texture goniometer, Materials Characterization, 45 (1), pp. 39-49, DOI:10.1016/S1044-5803(00)00044-9
  • 7. Kumar, R., Dwivedi, R.K., Ahmed, S. (2021), Stability of retained austenite in carbide free bainite during the austempering temperature and its influence on sliding wear of high silicon steel, Silicon 13, 1249–1259, DOI:10.1007/s12633-020-00513-2 8. Zou, D., Han, Y., Zhang, W., Fang, X. (2010), Influence of tempering process on mechanical properties of 00Cr13Ni4Mo super martensitic stainless steel, Journal of Iron and Steel Research International, 17 (8), 50-54, DOI:10.1016/S1006706X(10)60128-8
  • 9. Murathan, Ö.F., Davut, K., Kilicli, V. (2021), Effect of austenitizing temperatures on the microstructure and mechanical properties of AISI 9254 steel, Materials Testing, 63 (1), 48-54, DOI:10.1515/mt-2020-0007
  • 10. Bakhshi, S., Asadabad, M. A., Bakhshi, S. (2022), Influence of the heat treatment on the quantitative features of the fracture surfaces and the mechanical properties of AISI 4340 steel sheets, Ironmaking & Steelmaking, 1-15, DOI: 10.1080/03019233.2022.2107111
  • 11. Wu, D., Qi, J.G., Li, Y., Qiu, H. (2015), Determination of retained austenite content in Fe–Cr–Ni weld metal, Materials Research Innovations, 19 (5), 410-414, DOI:10.1179/1432891714Z.0000000001120
  • 12. Ferreira, H.C., Boratto, F.J.M, , Buono, V.T.L. (2015), Determination of low levels of retained austenite in low-carbon high-manganese steel using X-ray diffraction Materials Science and Engineering: A. 628, 110-115, DOI:10.1016/j.msea.2015.01.019
  • 13. Sharmaa, S., A. Hegde, A. (2021), An Analysis of the Amount of Retained Austenite in Manganese Alloyed Austempered Ductile Iron , Materials Research. 24(6), 1-6, DOI: https://doi.org/10.1590/1980-5373-MR-2021-0301 14. Cui, C., Dong, J., Epp, j., Schulz, A., Steinbacher, M., Acar, S., Herbst, S., Maier, H.J. (2021), In Situ X-Ray Diffraction Analysis of Microstructure Evolution during Deep Cryogenic Treatment and Tempering of Tool Steels, Steel Reseach Int. 92(12), 1-9, https://doi.org/10.1002/srin.202100076 15. Magner, S. H., De Angelis, R. J., Weins, W. N., Makinson, J. D. (2002), A historical review of retained austenite and its measurement by x-ray diffraction, JCPDS Advances in X-Ray Analysis 45, 92-97
  • 16. Cullity, B.D. (1978), Elements of X-ray diffraction, 2nd ed., Addison-Wesley Publishing Company Inc., Phillippines.
  • 17. ASTM E975-03, (2013), Standard practice for X-ray determination of retained austenite in steel with near random crystallographic orientation, ASTM International
  • 18. Ko K.K., Jang J.H., Tiwari S, Bae H.J., Sung, H.K., Kim, J.G., Seol. J.B. (2022), Quantitative analysis of retained austenite in Nb added Fe-based alloy. Appl Microsc. 52(1):5,1-10, doi: 10.1186/s42649-022-00074-1. 19. Kim, S., Lee, Y. (2011), Effect of retained austenite phase on springback of cold-rolled TRIP steel sheets, Materials Science and Engineering: A 530, 218-224, DOI:10.1016/j.msea.2011.09.077
  • 20. Li, S., Deng, Y., Wu, X., Wang, H., Min, Y. ( 2010), Effect of deep cryogenic treatment on internal friction behaviors of cold work die steel and their experimental explanation by coupling model. Materials Science and Engineering: A 527 29, 7950-7954, DOI:10.1016/j.msea.2010.08.086
  • 21. Gunerli, E. (2012), Effect of tempering temperature on the mechanıcal propertıes of hardened 1.2842 tool steel, MSc diss., University of Cukurova.
  • 22. Euser, V. K. (2021), "The Role of Retained Austenite in Tempered Martensite Embrittlement of 4340 and 300-M Steels Investigated through Rapid Tempering" Metals 11, no. 9: 1349. https://doi.org/10.3390/met11091349
Year 2022, , 263 - 268, 20.12.2022
https://doi.org/10.26701/ems.1186751

Abstract

Project Number

MMF2012YL15

References

  • 1. Broyson ,W.E. (2015), Heat treatment, selection, and application of tool steels 2nd ed., Hanser Publishers, Munich. 2. Li, J., Feng Y., Tang, L., Wu, X. (2013), FEM prediction of retained austenite evolution in cold work die steel during deep cryogenic treatment, Materials Letters, 100,. 274-277, DOI:10.1016/j.matlet.2013.03.046 3. Vander, G. F. (2009), Martensite & retained austenite, Industrial Heating, 76, 51-52
  • 4. Wiewiorowska, S., Muskalski, Z. (2016), Effect of the die approach zone shape on the transition of retained austenite and the mechanical properties of TRIP steel wires, Materials Testing, 58, No. 4, pp. 302-305, DOI:10.3139/120.110852
  • 5. Abdulkareem, N.M., Jabbar, M.A. (2017), Micro-structure and Mechanical Properties of AI-SI4340 High Strength Low Alloy Steel (HSLA steel) Using Magnetic Saturation Measurement and X-Ray Diffraction methods, Basrah Journal for Engineering Sciences, 17(2) , 1-8
  • 6. Zhang, M.X., Kelly, Bekessy, L.K., Gates, J.D. (2000), Determination of retained austenite using an X-ray texture goniometer, Materials Characterization, 45 (1), pp. 39-49, DOI:10.1016/S1044-5803(00)00044-9
  • 7. Kumar, R., Dwivedi, R.K., Ahmed, S. (2021), Stability of retained austenite in carbide free bainite during the austempering temperature and its influence on sliding wear of high silicon steel, Silicon 13, 1249–1259, DOI:10.1007/s12633-020-00513-2 8. Zou, D., Han, Y., Zhang, W., Fang, X. (2010), Influence of tempering process on mechanical properties of 00Cr13Ni4Mo super martensitic stainless steel, Journal of Iron and Steel Research International, 17 (8), 50-54, DOI:10.1016/S1006706X(10)60128-8
  • 9. Murathan, Ö.F., Davut, K., Kilicli, V. (2021), Effect of austenitizing temperatures on the microstructure and mechanical properties of AISI 9254 steel, Materials Testing, 63 (1), 48-54, DOI:10.1515/mt-2020-0007
  • 10. Bakhshi, S., Asadabad, M. A., Bakhshi, S. (2022), Influence of the heat treatment on the quantitative features of the fracture surfaces and the mechanical properties of AISI 4340 steel sheets, Ironmaking & Steelmaking, 1-15, DOI: 10.1080/03019233.2022.2107111
  • 11. Wu, D., Qi, J.G., Li, Y., Qiu, H. (2015), Determination of retained austenite content in Fe–Cr–Ni weld metal, Materials Research Innovations, 19 (5), 410-414, DOI:10.1179/1432891714Z.0000000001120
  • 12. Ferreira, H.C., Boratto, F.J.M, , Buono, V.T.L. (2015), Determination of low levels of retained austenite in low-carbon high-manganese steel using X-ray diffraction Materials Science and Engineering: A. 628, 110-115, DOI:10.1016/j.msea.2015.01.019
  • 13. Sharmaa, S., A. Hegde, A. (2021), An Analysis of the Amount of Retained Austenite in Manganese Alloyed Austempered Ductile Iron , Materials Research. 24(6), 1-6, DOI: https://doi.org/10.1590/1980-5373-MR-2021-0301 14. Cui, C., Dong, J., Epp, j., Schulz, A., Steinbacher, M., Acar, S., Herbst, S., Maier, H.J. (2021), In Situ X-Ray Diffraction Analysis of Microstructure Evolution during Deep Cryogenic Treatment and Tempering of Tool Steels, Steel Reseach Int. 92(12), 1-9, https://doi.org/10.1002/srin.202100076 15. Magner, S. H., De Angelis, R. J., Weins, W. N., Makinson, J. D. (2002), A historical review of retained austenite and its measurement by x-ray diffraction, JCPDS Advances in X-Ray Analysis 45, 92-97
  • 16. Cullity, B.D. (1978), Elements of X-ray diffraction, 2nd ed., Addison-Wesley Publishing Company Inc., Phillippines.
  • 17. ASTM E975-03, (2013), Standard practice for X-ray determination of retained austenite in steel with near random crystallographic orientation, ASTM International
  • 18. Ko K.K., Jang J.H., Tiwari S, Bae H.J., Sung, H.K., Kim, J.G., Seol. J.B. (2022), Quantitative analysis of retained austenite in Nb added Fe-based alloy. Appl Microsc. 52(1):5,1-10, doi: 10.1186/s42649-022-00074-1. 19. Kim, S., Lee, Y. (2011), Effect of retained austenite phase on springback of cold-rolled TRIP steel sheets, Materials Science and Engineering: A 530, 218-224, DOI:10.1016/j.msea.2011.09.077
  • 20. Li, S., Deng, Y., Wu, X., Wang, H., Min, Y. ( 2010), Effect of deep cryogenic treatment on internal friction behaviors of cold work die steel and their experimental explanation by coupling model. Materials Science and Engineering: A 527 29, 7950-7954, DOI:10.1016/j.msea.2010.08.086
  • 21. Gunerli, E. (2012), Effect of tempering temperature on the mechanıcal propertıes of hardened 1.2842 tool steel, MSc diss., University of Cukurova.
  • 22. Euser, V. K. (2021), "The Role of Retained Austenite in Tempered Martensite Embrittlement of 4340 and 300-M Steels Investigated through Rapid Tempering" Metals 11, no. 9: 1349. https://doi.org/10.3390/met11091349
There are 16 citations in total.

Details

Primary Language English
Subjects Mechanical Engineering
Journal Section Research Article
Authors

Ender Günerli 0000-0002-2373-5603

Melih Bayramoğlu 0000-0002-5152-3798

Necdet Geren 0000-0002-9645-0852

Project Number MMF2012YL15
Publication Date December 20, 2022
Acceptance Date November 7, 2022
Published in Issue Year 2022

Cite

APA Günerli, E., Bayramoğlu, M., & Geren, N. (2022). Volume fraction of retained austenite in 1.2842 tool steel as a function of tempering temperature. European Mechanical Science, 6(4), 263-268. https://doi.org/10.26701/ems.1186751

Dergi TR Dizin'de Taranmaktadır.

Flag Counter