Review
BibTex RIS Cite

A critical review of composite filaments for fused deposition modeling: Material properties, applications, and future directions

Year 2024, , 199 - 209, 20.09.2024
https://doi.org/10.26701/ems.1451829

Abstract

This review paper provides a comprehensive analysis of recent advancements in the development and application of composite filaments for fused deposition modeling (FDM) 3D printing technology. Focusing on the integration of various materials such as nano-fillers, fibers, and bio-based polymers into polylactic acid (PLA) and other thermoplastics, this study delves into how these composites enhance mechanical, thermal and functional properties of the printed objects. We critically assess studies that investigate the impact of raster orientation, filler content, and material composition on tensile, bending, and impact strength, as well as on the thermal stability and degradation behavior of composite filaments. The review highlights key findings from the literature, including the optimization of filament formulations to achieve superior mechanical performance, improved thermal resistance, and specific functional characteristics suitable for a wide range of applications from biomedical to structural components. Moreover, this paper discusses the challenges associated with composite filament production, including material compatibility, dispersion of nano-fillers, and the need for printer hardware adjustments. Future directions for research in the field are identified, emphasizing the potential for new material combinations, sustainability considerations, and the development of filaments designed for specific industrial applications. An effective way to better meet designers’ expectations for qualified materials is composite filaments. This review focuses on how these elements can be applied to improve both product design and functionality. A guide is presented in choosing composite filaments that can meet the features expected from the designed product.

Ethical Statement

Etik kurul izninie ihitiyaç yoktur.

Supporting Institution

Kastamonu Üniversitesi

Project Number

KÜBAP-1/2023-18

Thanks

Yazarlar desteklerinden dolayı Kastamonu Üniversitesi, Bilimsel Araştırmalar Proje Koordinatörlüğüne teşekkür eder.

References

  • Wu, G., Liu, S., Jia, H., & Dai, J. (2016). Preparation and properties of heat resistant polylactic acid (PLA)/Nano-SiO2 composite filament. Journal of Wuhan University of Technology-Mater. Sci. Ed., 31(1), 164-171. https://doi.org/10.1007/s11595-016-1347-2
  • Daver, F., Lee, K. P. M., Brandt, M., & Shanks, R. (2018). Cork-PLA composite filaments for fused deposition modelling. Composites Science and Technology, 168, 230-237. https://doi.org/10.1016/j.compscitech.2018.10.008
  • Kariz, M., Sernek, M., Obucina, M., & Kuzman, M. K. (2018). Effect of wood content in FDM filament on properties of 3D printed parts. Materials Today Communications, 14, 135-140. https://doi.org/10.1016/j.mtcomm.2017.12.016
  • Haq, R. H. A., Bin Marwah, O. M. F., Rahman, M. N. A., Haw, H. F., Abdullah, H., Ahmad, S., & Yunos, M. Z. (2018). Mechanical properties of PCL/PLA/PEG composite blended with different molecular weight (MW) of PEG for Fused Deposition Modelling (FDM) filament wire. International Journal of Integrated Engineering, 10(5), 187-192. https://doi.org/10.30880/ijie.2018.10.05.028
  • Kamarudin, S. H., Abdullah, L. C., Aung, M. M., & Ratnam, C. T. (2020). Thermal and structural analysis of epoxidized jatropha oil and alkaline treated kenaf fiber reinforced poly(Lactic acid) biocomposites. Polymers, 12(11), Article 2604. https://doi.org/10.3390/polym12112604
  • Singh, S., Singh, G., Prakash, C., Ramakrishna, S., Lamberti, L., & Pruncu, C. I. (2020). 3D printed biodegradable composites: An insight into mechanical properties of PLA/chitosan scaffold. Polymer Testing, 89, Article 106722. https://doi.org/10.1016/j.polymertesting.2020.106722
  • Jayswal, A., & Adanur, S. (2023). Characterization of polylactic acid/thermoplastic polyurethane composite filaments manufactured for additive manufacturing with fused deposition modeling. Journal of Thermoplastic Composite Materials, 36(4), 1450-1471. https://doi.org/10.1177/08927057211062561
  • Kantaros, A., Soulis, E., Petrescu, F. I. T., & Ganetsos, T. (2023). Advanced composite materials utilized in FDM/FFF 3D printing manufacturing processes: The case of filled filaments. Materials, 16(18), Article 6210. https://doi.org/10.3390/ma16186210
  • Liu, W., Wu, N., & Pochiraju, K. (2018). Shape recovery characteristics of SiC/C/PLA composite filaments and 3D printed parts. Composites Part A: Applied Science and Manufacturing, 108, 1-11. https://doi.org/10.1016/j.compositesa.2018.02.017
  • Chen, Q., Mangadlao, J. D., Wallat, J., De Leon, A., Pokorski, J. K., & Advincula, R. C. (2017). 3D printing biocompatible polyurethane/poly(lactic acid)/graphene oxide nanocomposites: Anisotropic properties. ACS Applied Materials and Interfaces, 9(4), 4015-4023. https://doi.org/10.1021/acsami.6b11793
  • Çanti, E., Aydin, M., & Yildirim, F. (2018). Production and characterization of composite filaments for 3D printing. Journal of Polytechnic, 21(2), 397-402. https://doi.org/10.2339/politeknik.389591
  • Li, X., Ni, Z., Bai, S., & Lou, B. (2018). Preparation and mechanical properties of fiber reinforced PLA for 3D printing materials. IOP Conference Series: Materials Science and Engineering, 322(2), Article 022012. https://doi.org/10.1088/1757-899X/322/2/022012
  • Ertane, E. G., Domer-Reisel, A., Baran, O., Welzel, T., Matner, V., & Svoboda, S. (2018). Processing and wear behaviour of 3D printed PLA reinforced with biogenic carbon. Advances in Tribology, 2018, Article 1763182. https://doi.org/10.1155/2018/1763182
  • Caminero, M. A., Chacon, J. M., Garcia-Plaza, E., Nunez, P. J., Reverte, J. M., & Becar, J. P. (2019). Additive manufacturing of PLA-based composites using fused filament fabrication: Effect of graphene nanoplatelet reinforcement on mechanical properties, dimensional accuracy and texture. Polymers, 11(5), Article 799. https://doi.org/10.3390/polym11050799
  • Charoenying, T., Patrojanasophon, P., Ngawhirunpat, T., Rojanarata, T., Akkaramongkolporn, P., & Opanasopit, P. (2020). Three-dimensional (3D)-printed devices composed of hydrophilic cap and hydrophobic body for improving buoyancy and gastric retention of domperidone tablets. European Journal of Pharmaceutical Sciences, 155, Article 105555. https://doi.org/10.1016/j.ejps.2020.105555
  • Huerta-Cardoso, O., Durazo-Cardenas, I., Longhurst, P., Simms, N. J., & Encinas-Oropesa, A. (2020). Fabrication of agave tequilana bagasse/PLA composite and preliminary mechanical properties assessment. Industrial Crops and Products, 152, Article 112523. https://doi.org/10.1016/j.indcrop.2020.112523
  • Zhou, X., Wu, L., & Wang, J. (2023). Recent developments in conductive polymer composites for fused deposition modeling. Composites Part A: Applied Science and Manufacturing, Article 107739. https://doi.org/10.1016/j.compositesa.2023.107739
  • Gkartzou, E., Koumoulos, E. P., & Charitidis, C. A. (2017). Production and 3D printing processing of bio-based thermoplastic filament. Manufacturing Review, 4, Article 20. https://doi.org/10.1051/mfreview/2016020
  • Yu, W. W., Zhang, J., Wu, J. R., Wang, X. Z., & Deng, Y. H. (2017). Incorporation of graphitic nano-filler and poly(lactic acid) in fused deposition modeling. Journal of Applied Polymer Science, 134(15), Article 44703. https://doi.org/10.1002/app.44703
  • Ausejo, J. G., Rydz, J., Musial, M., Sikorska, W., Sobota, M., Wlodarczyk, J., & Kowalczuk, M. (2018). A comparative study of three-dimensional printing directions: The degradation and toxicological profile of a PLA/PHA blend. Polymer Degradation and Stability, 152, 191-207. https://doi.org/10.1016/j.polymdegradstab.2018.04.024
  • Mansour, M., Tsongas, K., Tzetzis, D., & Antoniadis, A. (2018). Mechanical and dynamic behavior of fused filament fabrication 3D printed polyethylene terephthalate glycol reinforced with carbon fibers. Polymer-Plastics Technology and Engineering, 57(16), 1715-1725. https://doi.org/10.1080/03602559.2017.1419490
  • Corcione, E. C., Gervaso, F., Scalera, F., Padmanabhan, S. K., Madaghiele, M., Montagna, F., & Maffezzoli, A. (2019). Highly loaded hydroxyapatite microsphere/PLA porous scaffolds obtained by fused deposition modelling. Ceramics International, 45(2), 2803-2810. https://doi.org/10.1016/j.ceramint.2018.07.297
  • Kumar, S., Singh, R., Singh, M., Singh, T., & Batish, A. (2020). Multi material 3D printing of PLA PA6/TiO2 polymeric matrix: Flexural, wear and morphological properties. Journal of Thermoplastic Composite Materials, 089270572095319. https://doi.org/10.1177/0892705720953193
  • Nevado, P., Lopera, A., Bezzon, V., Fulla, M. R., Palacio, J., Zaghete, M. A., & Garcia, C. (2020). Preparation and in vitro evaluation of PLA/biphasic calcium phosphate filaments used for fused deposition modelling of scaffolds. Materials Science and Engineering C, 114, Article 111013. https://doi.org/10.1016/j.msec.2020.111013
  • Del Pilar Fabra Rivera, A., de Castro Magalhães, F., & Campos Rubio, J. C. (2023). Experimental characterization of PLA composites printed by fused deposition modelling. Journal of Composite Materials, 57(5), 941-954. https://doi.org/10.1177/00219983221146619
  • Palaniappan, M., Tirlangi, S., Mohamed, M. J. S., Moorthy, R. S., Valeti, S. V., & Boopathi, S. (2023). Fused deposition modelling of polylactic acid (PLA)-based polymer composites: A case study. In Development, Properties, and Industrial Applications of 3D Printed Polymer Composites (pp. 66-85). IGI Global. https://doi.org/10.4018/978-1-6684-6009-2.ch005
  • Letcher, T., & Waytashek, M. (2014). Material property testing of 3D-printed specimen in PLA on an entry-level 3D printer. ASME International Mechanical Engineering Congress and Exposition, Proceedings (IMECE), 2A. https://doi.org/10.1115/IMECE2014-39379
  • Naveed, N. (2020). Investigate the effects of process parameters on material properties and microstructural changes of 3D-printed specimens using fused deposition modelling (FDM). Materials Technology, 1-14. https://doi.org/10.1080/10667857.2020.1758475
  • Vinay, D. L., Keshavamurthy, R., Erannagari, S., Gajakosh, A., Dwivedi, Y. D., Bandhu, D., ... & Saxena, K. K. (2024). Parametric analysis of processing variables for enhanced adhesion in metal-polymer composites fabricated by fused deposition modeling. Journal of Adhesion Science and Technology, 38(3), 331-354. https://doi.org/10.1080/01694243.2023.2228496
  • Singh, P., Singari, R. M., & Mishra, R. S. (2024). Enhanced mechanical properties of MWCNT reinforced ABS nanocomposites fabricated through additive manufacturing process. Polymers for Advanced Technologies, 35(2), e6308. https://doi.org/10.1002/pat.6308
  • Kargar, E., & Ghasemi-Ghalebahman, A. (2023). Experimental investigation on fatigue life and tensile strength of carbon fiber-reinforced PLA composites based on fused deposition modeling. Scientific Reports, 13(1), Article 18194. https://doi.org/10.1038/s41598-023-45046-x
Year 2024, , 199 - 209, 20.09.2024
https://doi.org/10.26701/ems.1451829

Abstract

Project Number

KÜBAP-1/2023-18

References

  • Wu, G., Liu, S., Jia, H., & Dai, J. (2016). Preparation and properties of heat resistant polylactic acid (PLA)/Nano-SiO2 composite filament. Journal of Wuhan University of Technology-Mater. Sci. Ed., 31(1), 164-171. https://doi.org/10.1007/s11595-016-1347-2
  • Daver, F., Lee, K. P. M., Brandt, M., & Shanks, R. (2018). Cork-PLA composite filaments for fused deposition modelling. Composites Science and Technology, 168, 230-237. https://doi.org/10.1016/j.compscitech.2018.10.008
  • Kariz, M., Sernek, M., Obucina, M., & Kuzman, M. K. (2018). Effect of wood content in FDM filament on properties of 3D printed parts. Materials Today Communications, 14, 135-140. https://doi.org/10.1016/j.mtcomm.2017.12.016
  • Haq, R. H. A., Bin Marwah, O. M. F., Rahman, M. N. A., Haw, H. F., Abdullah, H., Ahmad, S., & Yunos, M. Z. (2018). Mechanical properties of PCL/PLA/PEG composite blended with different molecular weight (MW) of PEG for Fused Deposition Modelling (FDM) filament wire. International Journal of Integrated Engineering, 10(5), 187-192. https://doi.org/10.30880/ijie.2018.10.05.028
  • Kamarudin, S. H., Abdullah, L. C., Aung, M. M., & Ratnam, C. T. (2020). Thermal and structural analysis of epoxidized jatropha oil and alkaline treated kenaf fiber reinforced poly(Lactic acid) biocomposites. Polymers, 12(11), Article 2604. https://doi.org/10.3390/polym12112604
  • Singh, S., Singh, G., Prakash, C., Ramakrishna, S., Lamberti, L., & Pruncu, C. I. (2020). 3D printed biodegradable composites: An insight into mechanical properties of PLA/chitosan scaffold. Polymer Testing, 89, Article 106722. https://doi.org/10.1016/j.polymertesting.2020.106722
  • Jayswal, A., & Adanur, S. (2023). Characterization of polylactic acid/thermoplastic polyurethane composite filaments manufactured for additive manufacturing with fused deposition modeling. Journal of Thermoplastic Composite Materials, 36(4), 1450-1471. https://doi.org/10.1177/08927057211062561
  • Kantaros, A., Soulis, E., Petrescu, F. I. T., & Ganetsos, T. (2023). Advanced composite materials utilized in FDM/FFF 3D printing manufacturing processes: The case of filled filaments. Materials, 16(18), Article 6210. https://doi.org/10.3390/ma16186210
  • Liu, W., Wu, N., & Pochiraju, K. (2018). Shape recovery characteristics of SiC/C/PLA composite filaments and 3D printed parts. Composites Part A: Applied Science and Manufacturing, 108, 1-11. https://doi.org/10.1016/j.compositesa.2018.02.017
  • Chen, Q., Mangadlao, J. D., Wallat, J., De Leon, A., Pokorski, J. K., & Advincula, R. C. (2017). 3D printing biocompatible polyurethane/poly(lactic acid)/graphene oxide nanocomposites: Anisotropic properties. ACS Applied Materials and Interfaces, 9(4), 4015-4023. https://doi.org/10.1021/acsami.6b11793
  • Çanti, E., Aydin, M., & Yildirim, F. (2018). Production and characterization of composite filaments for 3D printing. Journal of Polytechnic, 21(2), 397-402. https://doi.org/10.2339/politeknik.389591
  • Li, X., Ni, Z., Bai, S., & Lou, B. (2018). Preparation and mechanical properties of fiber reinforced PLA for 3D printing materials. IOP Conference Series: Materials Science and Engineering, 322(2), Article 022012. https://doi.org/10.1088/1757-899X/322/2/022012
  • Ertane, E. G., Domer-Reisel, A., Baran, O., Welzel, T., Matner, V., & Svoboda, S. (2018). Processing and wear behaviour of 3D printed PLA reinforced with biogenic carbon. Advances in Tribology, 2018, Article 1763182. https://doi.org/10.1155/2018/1763182
  • Caminero, M. A., Chacon, J. M., Garcia-Plaza, E., Nunez, P. J., Reverte, J. M., & Becar, J. P. (2019). Additive manufacturing of PLA-based composites using fused filament fabrication: Effect of graphene nanoplatelet reinforcement on mechanical properties, dimensional accuracy and texture. Polymers, 11(5), Article 799. https://doi.org/10.3390/polym11050799
  • Charoenying, T., Patrojanasophon, P., Ngawhirunpat, T., Rojanarata, T., Akkaramongkolporn, P., & Opanasopit, P. (2020). Three-dimensional (3D)-printed devices composed of hydrophilic cap and hydrophobic body for improving buoyancy and gastric retention of domperidone tablets. European Journal of Pharmaceutical Sciences, 155, Article 105555. https://doi.org/10.1016/j.ejps.2020.105555
  • Huerta-Cardoso, O., Durazo-Cardenas, I., Longhurst, P., Simms, N. J., & Encinas-Oropesa, A. (2020). Fabrication of agave tequilana bagasse/PLA composite and preliminary mechanical properties assessment. Industrial Crops and Products, 152, Article 112523. https://doi.org/10.1016/j.indcrop.2020.112523
  • Zhou, X., Wu, L., & Wang, J. (2023). Recent developments in conductive polymer composites for fused deposition modeling. Composites Part A: Applied Science and Manufacturing, Article 107739. https://doi.org/10.1016/j.compositesa.2023.107739
  • Gkartzou, E., Koumoulos, E. P., & Charitidis, C. A. (2017). Production and 3D printing processing of bio-based thermoplastic filament. Manufacturing Review, 4, Article 20. https://doi.org/10.1051/mfreview/2016020
  • Yu, W. W., Zhang, J., Wu, J. R., Wang, X. Z., & Deng, Y. H. (2017). Incorporation of graphitic nano-filler and poly(lactic acid) in fused deposition modeling. Journal of Applied Polymer Science, 134(15), Article 44703. https://doi.org/10.1002/app.44703
  • Ausejo, J. G., Rydz, J., Musial, M., Sikorska, W., Sobota, M., Wlodarczyk, J., & Kowalczuk, M. (2018). A comparative study of three-dimensional printing directions: The degradation and toxicological profile of a PLA/PHA blend. Polymer Degradation and Stability, 152, 191-207. https://doi.org/10.1016/j.polymdegradstab.2018.04.024
  • Mansour, M., Tsongas, K., Tzetzis, D., & Antoniadis, A. (2018). Mechanical and dynamic behavior of fused filament fabrication 3D printed polyethylene terephthalate glycol reinforced with carbon fibers. Polymer-Plastics Technology and Engineering, 57(16), 1715-1725. https://doi.org/10.1080/03602559.2017.1419490
  • Corcione, E. C., Gervaso, F., Scalera, F., Padmanabhan, S. K., Madaghiele, M., Montagna, F., & Maffezzoli, A. (2019). Highly loaded hydroxyapatite microsphere/PLA porous scaffolds obtained by fused deposition modelling. Ceramics International, 45(2), 2803-2810. https://doi.org/10.1016/j.ceramint.2018.07.297
  • Kumar, S., Singh, R., Singh, M., Singh, T., & Batish, A. (2020). Multi material 3D printing of PLA PA6/TiO2 polymeric matrix: Flexural, wear and morphological properties. Journal of Thermoplastic Composite Materials, 089270572095319. https://doi.org/10.1177/0892705720953193
  • Nevado, P., Lopera, A., Bezzon, V., Fulla, M. R., Palacio, J., Zaghete, M. A., & Garcia, C. (2020). Preparation and in vitro evaluation of PLA/biphasic calcium phosphate filaments used for fused deposition modelling of scaffolds. Materials Science and Engineering C, 114, Article 111013. https://doi.org/10.1016/j.msec.2020.111013
  • Del Pilar Fabra Rivera, A., de Castro Magalhães, F., & Campos Rubio, J. C. (2023). Experimental characterization of PLA composites printed by fused deposition modelling. Journal of Composite Materials, 57(5), 941-954. https://doi.org/10.1177/00219983221146619
  • Palaniappan, M., Tirlangi, S., Mohamed, M. J. S., Moorthy, R. S., Valeti, S. V., & Boopathi, S. (2023). Fused deposition modelling of polylactic acid (PLA)-based polymer composites: A case study. In Development, Properties, and Industrial Applications of 3D Printed Polymer Composites (pp. 66-85). IGI Global. https://doi.org/10.4018/978-1-6684-6009-2.ch005
  • Letcher, T., & Waytashek, M. (2014). Material property testing of 3D-printed specimen in PLA on an entry-level 3D printer. ASME International Mechanical Engineering Congress and Exposition, Proceedings (IMECE), 2A. https://doi.org/10.1115/IMECE2014-39379
  • Naveed, N. (2020). Investigate the effects of process parameters on material properties and microstructural changes of 3D-printed specimens using fused deposition modelling (FDM). Materials Technology, 1-14. https://doi.org/10.1080/10667857.2020.1758475
  • Vinay, D. L., Keshavamurthy, R., Erannagari, S., Gajakosh, A., Dwivedi, Y. D., Bandhu, D., ... & Saxena, K. K. (2024). Parametric analysis of processing variables for enhanced adhesion in metal-polymer composites fabricated by fused deposition modeling. Journal of Adhesion Science and Technology, 38(3), 331-354. https://doi.org/10.1080/01694243.2023.2228496
  • Singh, P., Singari, R. M., & Mishra, R. S. (2024). Enhanced mechanical properties of MWCNT reinforced ABS nanocomposites fabricated through additive manufacturing process. Polymers for Advanced Technologies, 35(2), e6308. https://doi.org/10.1002/pat.6308
  • Kargar, E., & Ghasemi-Ghalebahman, A. (2023). Experimental investigation on fatigue life and tensile strength of carbon fiber-reinforced PLA composites based on fused deposition modeling. Scientific Reports, 13(1), Article 18194. https://doi.org/10.1038/s41598-023-45046-x
There are 31 citations in total.

Details

Primary Language English
Subjects Material Design and Behaviors
Journal Section Review Article
Authors

Arslan Kaptan 0000-0002-2431-9329

Fuat Kartal 0000-0002-2567-9705

Project Number KÜBAP-1/2023-18
Early Pub Date August 10, 2024
Publication Date September 20, 2024
Submission Date March 14, 2024
Acceptance Date May 24, 2024
Published in Issue Year 2024

Cite

APA Kaptan, A., & Kartal, F. (2024). A critical review of composite filaments for fused deposition modeling: Material properties, applications, and future directions. European Mechanical Science, 8(3), 199-209. https://doi.org/10.26701/ems.1451829

Dergi TR Dizin'de Taranmaktadır.

Flag Counter