Research Article
BibTex RIS Cite

Modeling and simulation of earth coverage of a low earth orbit (LEO) satellite

Year 2024, , 85 - 92, 20.06.2024
https://doi.org/10.26701/ems.1466031

Abstract

Efficient management of operations in near space, just beyond the Earth’s atmosphere, relies on the precise control of satellites positioned relatively close to our planet. Satellite systems, serving critical functions in telecommunications, observation, exploration, and more, have demonstrated their prowess as a transformative technology, consistently delivering high-precision data over numerous years. Among satellite systems, Low Earth Orbit (LEO) technology is gaining prominence due to its advantages, including lower power requirements for transmission, reduced propagation delays, and heightened coverage for polar regions. Achieving optimal efficiency from LEO satellites necessitates a thorough understanding of their fundamental orbital parameters and precise control over them. This study explores the orbital analysis and Earth coverage considerations of LEO satellites, scrutinizing orbital parameters in detail to compute coverage areas across various scenarios. Through this investigation, the potential benefits of data exchange with ground stations facilitated by LEO satellites are explored. In addition, the implications are discussed regarding the adjustment of data exchange topologies according to geographical locations and country borders.

References

  • Khalife, J.J., Kassas, Z.M. (2019). Receiver design for Doppler positioning with LEO satellites. ICASSP 2019 - 2019 IEEE International Conference on Acoustics, Speech and Signal Processing, 5506-5510. https://doi.org/10.1109/ICASSP.2019.8682554
  • Bakirci, M., Cetin, M. (2022). Utilization of a vehicle’s on-board diagnostics to reduce GPS-sourced positioning error. 2022 Innovations in Intelligent Systems and Applications Conference (ASYU), Antalya, Turkey, 1-4. https://doi.org/10.1109/ASYU52992.2022.9833873
  • Cluzel, S., Franck, L., Radzik, J., Cazalens, S., Dervin, M., Baudoin, C. (2018). 3GPP NB-IOT coverage extension using LEO satellites. 2018 IEEE 87th Vehicular Technology Conference (VTC Spring), 1-5. https://doi.org/10.1109/VTCSpring.2018.8417874
  • Su, Y., Liu, Y., Zhou, Y., Yuan, J., Cao, H., Shi, J. (2019). Broadband LEO satellite communications: architectures and key technologies. IEEE Wireless Communications, 26(2), 55-61. https://doi.org/10.1109/MWC.2019.8684206
  • Crisp, N.H., Roberts, P.C.E., Livadiotti, S., Oiko, V.T.A., Edmondson, S., Haigh, S.J. (2020). The benefits of very low earth orbit for earth observation missions. Progress in Aerospace Sciences, 117, 1-18. https://doi.org/10.1016/j.paerosci.2020.100619
  • Routray, S.K., Javali, A., Sahoo, A., Sharmila, K.P., Anand, S. (2020). Military applications of satellite based IoT. 2020 Third International Conference on Smart Systems and Inventive Technology (ICSSIT), 122-127. https://doi.org/10.1109/ICSSIT48917.2020.9214165
  • Li, B., Ge, H., Ge, M., Nie, L., Shen, Y., Schuh, H. (2019). LEO enhanced global navigation satellite system (LeGNSS) for real-time precise positioning services. Advances in Space Research, 63(1), 73-93. https://doi.org/10.1016/j.asr.2018.08.026
  • Khalife, J., Neinavaie, M., Kassas, Z.M. (2020). Navigation with differential carrier phase measurements from megaconstellation LEO satellites. 2020 IEEE/ION Position, Location and Navigation Symposium (PLANS), Portland, Oregon, 1393-1404. https://doi.org/10.1109/PLANS46316.2020.9110165
  • Morales, J., Khalife, J., Kassas, Z.M. (2019). Simultaneous tracking of Orbcomm LEO satellites and inertial navigation system aiding using Doppler measurements. 2019 IEEE 89th Vehicular Technology Conference (VTC2019-Spring), 1-6. https://doi.org/10.1109/VTCSpring.2019.8746340
  • Reid, T., Neish, A., Walter, T., Enge, P. (2018). Broadband LEO constellations for navigation. NAVIGATION, Journal of the Institute of Navigation, 65(2), 205-220. https://doi.org/10.1002/navi.249
  • Lawrence, D., Cobb, H., Gutt, G., O’Connor, M., Reid, T., Walter, T. (2017). Navigation from LEO: current capability and future promise. GPS World Magazine, 28(7), 42-48.
  • Chen, X., Wang, M., Zhang, L. (2016). Analysis on the performance bound of Doppler positioning using one LEO satellite. IEEE Vehicular Technology Conference (VTC-Fall), 1-5. https://doi.org/10.1109/VTCFall.2016.7881273
  • Kozhaya, S.E., Haidar-Ahmad, J.A., Abdallah, A.A., Kassas, Z.M., Saab, S.M. (2021). Comparison of neural network architectures for simultaneous tracking and navigation with LEO satellites. 34th International Technical Meeting of the Satellite Division of the Institute of Navigation (ION GNSS+ 2021), St. Louis, Missouri, 2507-2520. https://doi.org/10.33012/2021.17811
  • North American Aerospace Defense Command (NORAD). “Two-line element sets.” celestrak.com. https://www.celestrak.com/NORAD/elements/ (accessed Jan. 3, 2024).
  • Geng, S., Liu, S., Fang, Z., Gao, S. (2020). An optimal delay routing algorithm considering delay variation in the LEO satellite communication network. Computer Networks, 173, 107166. https://doi.org/10.1016/j.comnet.2020.107166
  • Ge, H., Li, B., Nie, L., Ge, M., Schuh, H. (2020). LEO constellation optimization for LEO enhanced global navigation satellite system (LeGNSS). Advances in Space Research, 66(3), 520-532. https://doi.org/10.1016/j.asr.2019.04.008
  • Sun, X., Han, C., Chen, P. (2017). Precise real-time navigation of LEO satellites using a single-frequency GPS receiver and ultra-rapid ephemerides. Aerospace Science and Technology, 67, 228-236. https://doi.org/10.1016/j.ast.2017.03.008
  • Lin, X., Chen, Y., Xue, J., Zhang, B., He, L., Chen, Y. (2024). Large-volume LEO satellite imaging data networked transmission scheduling problem: Model and algorithm. Expert Systems with Applications, 249(B), 123649. https://doi.org/10.1016/j.eswa.2023.123649
  • Denis, G., de Boissezon, H., Hosford, S., Pasco, X., Montfort, B., Ranera, F. (2016). The evolution of Earth Observation satellites in Europe and its impact on the performance of emergency response services. Acta Astronautica, 127, 619-633. https://doi.org/10.1016/j.actaastro.2016.06.019
  • Lourenço, R.B.R., Figueiredo, G.B., Tornatore, M., Mukherjee, B. (2019). Data evacuation from data centers in disaster-affected regions through software-defined satellite networks. Computer Networks, 148, 88-100. https://doi.org/10.1016/j.comnet.2018.11.022
  • Pardini, C., Anselmo, L. (2020). Environmental sustainability of large satellite constellations in low earth orbit. Acta Astronautica, 170, 27-36. https://doi.org/10.1016/j.actaastro.2020.01.014
  • Bakirci, M., Bayraktar, I. (2024). Transforming aircraft detection through LEO satellite imagery and YOLOv9 for improved aviation safety. 2024 26th International Conference on Digital Signal Processing and its Applications (DSPA), Moscow, Russian Federation, 1-6. https://doi.org/10.1109/DSPA.2024.9832371
  • Bakirci, M., Bayraktar, I. (2024). Boosting aircraft monitoring and security through ground surveillance optimization with YOLOv9. 2024 12th International Symposium on Digital Forensics and Security (ISDFS), San Antonio, TX, USA, 1-6. https://doi.org/10.1109/ISDFS.2024.9832372
  • Nwankwo, V.U.J., Chakrabarti, S.K. (2018). Effects of space weather on the ionosphere and LEO satellites’ orbital trajectory in equatorial, low and middle latitude. Advances in Space Research, 61(7), 1880-1889. https://doi.org/10.1016/j.asr.2017.10.022
  • Lele, N., Nigam, R., Bhattacharya, B.K. (2021). New findings on impact of COVID lockdown over terrestrial ecosystems from LEO-GEO satellites. Remote Sensing Applications: Society and Environment, 22, 100476. https://doi.org/10.1016/j.rsase.2021.100476
  • Maiti, M., & Kayal, P. (2024). Exploring innovative techniques for damage control during natural disasters. Journal of Safety Science and Resilience, 5(2), 147-155. https://doi.org/10.1016/j.jssr.2024.02.005
  • Numbere, A. O. (2022). Application of GIS and remote sensing towards forest resource management in mangrove forest of Niger Delta. Natural Resources Conservation and Advances for Sustainability, 433-459. https://doi.org/10.1016/j.nrscas.2022.05.015
  • Salcedo, D. A., Ciafardini, J. P., & Bava, J. A. (2020). Antenna for telemetry data relay communications in LEO satellites and inmarsat-F4 constellation. In 2020 IEEE Congreso Bienal de Argentina (ARGENCON) (pp. 1-6). IEEE. https://doi.org/10.1109/ARGENCON49523.2020.9505352
  • Zhan, Y., Wan, P., Jiang, C., Pan, X., Chen, X., & Guo, S. (2020). Challenges and solutions for the satellite tracking, telemetry, and command system. IEEE Wireless Communications, 27(6), 12-18. https://doi.org/10.1109/MWC.2020.9265056
  • Stock, G., Fraire, J. A., Mömke, T., Hermanns, H., Babayev, F., & Cruz, E. (2020). Managing fleets of LEO satellites: Nonlinear, optimal, efficient, scalable, usable, and robust. IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems, 39(11), 3762-3773. https://doi.org/10.1109/TCAD.2020.3021567
  • Done, A., Lesanu, C., Căilean, A., Graur, A., & Dimian, M. (2017). Implementation of an on-line remote control ground station for LEO satellites. In 2017 21st International Conference on System Theory, Control and Computing (ICSTCC) (pp. 855-859). IEEE. https://doi.org/10.1109/ICSTCC.2017.8107123
  • Xia, D., Zheng, X., Duan, P., Wang, C., Liu, L., & Ma, H. (2019). Ground-station based software-defined LEO satellite networks. In 2019 IEEE 25th International Conference on Parallel and Distributed Systems (ICPADS) (pp. 687-694). IEEE. https://doi.org/10.1109/ICPADS47876.2019.00099
  • Done, A., Căilean, A., Leşanu, C., Dimian, M., & Graur, A. (2017). Considerations on ground station antennas used for communication with LEO satellites. In 2017 International Symposium on Signals, Circuits and Systems (ISSCS) (pp. 1-4). IEEE. https://doi.org/10.1109/ISSCS.2017.8034928
  • Done, A., Căilean, A., Leşanu, C., Dimian, M., & Graur, A. (2017). Design and implementation of a satellite communication ground station. In 2017 International Symposium on Signals, Circuits and Systems (ISSCS) (pp. 71-75). IEEE. https://doi.org/10.1109/ISSCS.2017.8034929
  • Zeng, T., Sui, L., Jia, X., Lv, Z., Ji, G., & Dai, Q. (2019). Validation of enhanced orbit determination for GPS satellites with LEO GPS data considering multi ground station networks. Advances in Space Research, 63(9), 2938-2951. https://doi.org/10.1016/j.asr.2019.01.020
  • Talgat, A., Kishk, M. A., & Alouini, M. S. (2021). Stochastic geometry-based analysis of LEO satellite communication systems. IEEE Communications Letters, 25(8), 2458-2462. https://doi.org/10.1109/LCOMM.2021.3064457
  • Meng, Y., Bian, L., Han, L., Lei, W., Yan, T., & He, M. (2018). A global navigation augmentation system based on LEO communication constellation. In 2018 European Navigation Conference (ENC) (pp. 65-71). IEEE. https://doi.org/10.1109/EURONAV.2018.8443173
Year 2024, , 85 - 92, 20.06.2024
https://doi.org/10.26701/ems.1466031

Abstract

References

  • Khalife, J.J., Kassas, Z.M. (2019). Receiver design for Doppler positioning with LEO satellites. ICASSP 2019 - 2019 IEEE International Conference on Acoustics, Speech and Signal Processing, 5506-5510. https://doi.org/10.1109/ICASSP.2019.8682554
  • Bakirci, M., Cetin, M. (2022). Utilization of a vehicle’s on-board diagnostics to reduce GPS-sourced positioning error. 2022 Innovations in Intelligent Systems and Applications Conference (ASYU), Antalya, Turkey, 1-4. https://doi.org/10.1109/ASYU52992.2022.9833873
  • Cluzel, S., Franck, L., Radzik, J., Cazalens, S., Dervin, M., Baudoin, C. (2018). 3GPP NB-IOT coverage extension using LEO satellites. 2018 IEEE 87th Vehicular Technology Conference (VTC Spring), 1-5. https://doi.org/10.1109/VTCSpring.2018.8417874
  • Su, Y., Liu, Y., Zhou, Y., Yuan, J., Cao, H., Shi, J. (2019). Broadband LEO satellite communications: architectures and key technologies. IEEE Wireless Communications, 26(2), 55-61. https://doi.org/10.1109/MWC.2019.8684206
  • Crisp, N.H., Roberts, P.C.E., Livadiotti, S., Oiko, V.T.A., Edmondson, S., Haigh, S.J. (2020). The benefits of very low earth orbit for earth observation missions. Progress in Aerospace Sciences, 117, 1-18. https://doi.org/10.1016/j.paerosci.2020.100619
  • Routray, S.K., Javali, A., Sahoo, A., Sharmila, K.P., Anand, S. (2020). Military applications of satellite based IoT. 2020 Third International Conference on Smart Systems and Inventive Technology (ICSSIT), 122-127. https://doi.org/10.1109/ICSSIT48917.2020.9214165
  • Li, B., Ge, H., Ge, M., Nie, L., Shen, Y., Schuh, H. (2019). LEO enhanced global navigation satellite system (LeGNSS) for real-time precise positioning services. Advances in Space Research, 63(1), 73-93. https://doi.org/10.1016/j.asr.2018.08.026
  • Khalife, J., Neinavaie, M., Kassas, Z.M. (2020). Navigation with differential carrier phase measurements from megaconstellation LEO satellites. 2020 IEEE/ION Position, Location and Navigation Symposium (PLANS), Portland, Oregon, 1393-1404. https://doi.org/10.1109/PLANS46316.2020.9110165
  • Morales, J., Khalife, J., Kassas, Z.M. (2019). Simultaneous tracking of Orbcomm LEO satellites and inertial navigation system aiding using Doppler measurements. 2019 IEEE 89th Vehicular Technology Conference (VTC2019-Spring), 1-6. https://doi.org/10.1109/VTCSpring.2019.8746340
  • Reid, T., Neish, A., Walter, T., Enge, P. (2018). Broadband LEO constellations for navigation. NAVIGATION, Journal of the Institute of Navigation, 65(2), 205-220. https://doi.org/10.1002/navi.249
  • Lawrence, D., Cobb, H., Gutt, G., O’Connor, M., Reid, T., Walter, T. (2017). Navigation from LEO: current capability and future promise. GPS World Magazine, 28(7), 42-48.
  • Chen, X., Wang, M., Zhang, L. (2016). Analysis on the performance bound of Doppler positioning using one LEO satellite. IEEE Vehicular Technology Conference (VTC-Fall), 1-5. https://doi.org/10.1109/VTCFall.2016.7881273
  • Kozhaya, S.E., Haidar-Ahmad, J.A., Abdallah, A.A., Kassas, Z.M., Saab, S.M. (2021). Comparison of neural network architectures for simultaneous tracking and navigation with LEO satellites. 34th International Technical Meeting of the Satellite Division of the Institute of Navigation (ION GNSS+ 2021), St. Louis, Missouri, 2507-2520. https://doi.org/10.33012/2021.17811
  • North American Aerospace Defense Command (NORAD). “Two-line element sets.” celestrak.com. https://www.celestrak.com/NORAD/elements/ (accessed Jan. 3, 2024).
  • Geng, S., Liu, S., Fang, Z., Gao, S. (2020). An optimal delay routing algorithm considering delay variation in the LEO satellite communication network. Computer Networks, 173, 107166. https://doi.org/10.1016/j.comnet.2020.107166
  • Ge, H., Li, B., Nie, L., Ge, M., Schuh, H. (2020). LEO constellation optimization for LEO enhanced global navigation satellite system (LeGNSS). Advances in Space Research, 66(3), 520-532. https://doi.org/10.1016/j.asr.2019.04.008
  • Sun, X., Han, C., Chen, P. (2017). Precise real-time navigation of LEO satellites using a single-frequency GPS receiver and ultra-rapid ephemerides. Aerospace Science and Technology, 67, 228-236. https://doi.org/10.1016/j.ast.2017.03.008
  • Lin, X., Chen, Y., Xue, J., Zhang, B., He, L., Chen, Y. (2024). Large-volume LEO satellite imaging data networked transmission scheduling problem: Model and algorithm. Expert Systems with Applications, 249(B), 123649. https://doi.org/10.1016/j.eswa.2023.123649
  • Denis, G., de Boissezon, H., Hosford, S., Pasco, X., Montfort, B., Ranera, F. (2016). The evolution of Earth Observation satellites in Europe and its impact on the performance of emergency response services. Acta Astronautica, 127, 619-633. https://doi.org/10.1016/j.actaastro.2016.06.019
  • Lourenço, R.B.R., Figueiredo, G.B., Tornatore, M., Mukherjee, B. (2019). Data evacuation from data centers in disaster-affected regions through software-defined satellite networks. Computer Networks, 148, 88-100. https://doi.org/10.1016/j.comnet.2018.11.022
  • Pardini, C., Anselmo, L. (2020). Environmental sustainability of large satellite constellations in low earth orbit. Acta Astronautica, 170, 27-36. https://doi.org/10.1016/j.actaastro.2020.01.014
  • Bakirci, M., Bayraktar, I. (2024). Transforming aircraft detection through LEO satellite imagery and YOLOv9 for improved aviation safety. 2024 26th International Conference on Digital Signal Processing and its Applications (DSPA), Moscow, Russian Federation, 1-6. https://doi.org/10.1109/DSPA.2024.9832371
  • Bakirci, M., Bayraktar, I. (2024). Boosting aircraft monitoring and security through ground surveillance optimization with YOLOv9. 2024 12th International Symposium on Digital Forensics and Security (ISDFS), San Antonio, TX, USA, 1-6. https://doi.org/10.1109/ISDFS.2024.9832372
  • Nwankwo, V.U.J., Chakrabarti, S.K. (2018). Effects of space weather on the ionosphere and LEO satellites’ orbital trajectory in equatorial, low and middle latitude. Advances in Space Research, 61(7), 1880-1889. https://doi.org/10.1016/j.asr.2017.10.022
  • Lele, N., Nigam, R., Bhattacharya, B.K. (2021). New findings on impact of COVID lockdown over terrestrial ecosystems from LEO-GEO satellites. Remote Sensing Applications: Society and Environment, 22, 100476. https://doi.org/10.1016/j.rsase.2021.100476
  • Maiti, M., & Kayal, P. (2024). Exploring innovative techniques for damage control during natural disasters. Journal of Safety Science and Resilience, 5(2), 147-155. https://doi.org/10.1016/j.jssr.2024.02.005
  • Numbere, A. O. (2022). Application of GIS and remote sensing towards forest resource management in mangrove forest of Niger Delta. Natural Resources Conservation and Advances for Sustainability, 433-459. https://doi.org/10.1016/j.nrscas.2022.05.015
  • Salcedo, D. A., Ciafardini, J. P., & Bava, J. A. (2020). Antenna for telemetry data relay communications in LEO satellites and inmarsat-F4 constellation. In 2020 IEEE Congreso Bienal de Argentina (ARGENCON) (pp. 1-6). IEEE. https://doi.org/10.1109/ARGENCON49523.2020.9505352
  • Zhan, Y., Wan, P., Jiang, C., Pan, X., Chen, X., & Guo, S. (2020). Challenges and solutions for the satellite tracking, telemetry, and command system. IEEE Wireless Communications, 27(6), 12-18. https://doi.org/10.1109/MWC.2020.9265056
  • Stock, G., Fraire, J. A., Mömke, T., Hermanns, H., Babayev, F., & Cruz, E. (2020). Managing fleets of LEO satellites: Nonlinear, optimal, efficient, scalable, usable, and robust. IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems, 39(11), 3762-3773. https://doi.org/10.1109/TCAD.2020.3021567
  • Done, A., Lesanu, C., Căilean, A., Graur, A., & Dimian, M. (2017). Implementation of an on-line remote control ground station for LEO satellites. In 2017 21st International Conference on System Theory, Control and Computing (ICSTCC) (pp. 855-859). IEEE. https://doi.org/10.1109/ICSTCC.2017.8107123
  • Xia, D., Zheng, X., Duan, P., Wang, C., Liu, L., & Ma, H. (2019). Ground-station based software-defined LEO satellite networks. In 2019 IEEE 25th International Conference on Parallel and Distributed Systems (ICPADS) (pp. 687-694). IEEE. https://doi.org/10.1109/ICPADS47876.2019.00099
  • Done, A., Căilean, A., Leşanu, C., Dimian, M., & Graur, A. (2017). Considerations on ground station antennas used for communication with LEO satellites. In 2017 International Symposium on Signals, Circuits and Systems (ISSCS) (pp. 1-4). IEEE. https://doi.org/10.1109/ISSCS.2017.8034928
  • Done, A., Căilean, A., Leşanu, C., Dimian, M., & Graur, A. (2017). Design and implementation of a satellite communication ground station. In 2017 International Symposium on Signals, Circuits and Systems (ISSCS) (pp. 71-75). IEEE. https://doi.org/10.1109/ISSCS.2017.8034929
  • Zeng, T., Sui, L., Jia, X., Lv, Z., Ji, G., & Dai, Q. (2019). Validation of enhanced orbit determination for GPS satellites with LEO GPS data considering multi ground station networks. Advances in Space Research, 63(9), 2938-2951. https://doi.org/10.1016/j.asr.2019.01.020
  • Talgat, A., Kishk, M. A., & Alouini, M. S. (2021). Stochastic geometry-based analysis of LEO satellite communication systems. IEEE Communications Letters, 25(8), 2458-2462. https://doi.org/10.1109/LCOMM.2021.3064457
  • Meng, Y., Bian, L., Han, L., Lei, W., Yan, T., & He, M. (2018). A global navigation augmentation system based on LEO communication constellation. In 2018 European Navigation Conference (ENC) (pp. 65-71). IEEE. https://doi.org/10.1109/EURONAV.2018.8443173
There are 37 citations in total.

Details

Primary Language English
Subjects Dynamics, Vibration and Vibration Control, Mechanical Engineering (Other)
Journal Section Research Article
Authors

Murat Bakırcı 0000-0003-2092-1168

Early Pub Date May 24, 2024
Publication Date June 20, 2024
Submission Date April 6, 2024
Acceptance Date May 23, 2024
Published in Issue Year 2024

Cite

APA Bakırcı, M. (2024). Modeling and simulation of earth coverage of a low earth orbit (LEO) satellite. European Mechanical Science, 8(2), 85-92. https://doi.org/10.26701/ems.1466031

Dergi TR Dizin'de Taranmaktadır.

Flag Counter