Research Article
BibTex RIS Cite

The effect of rolling direction and strain rates on the tensile properties of AA2024-T3 aluminum alloy

Year 2024, , 145 - 152, 20.09.2024
https://doi.org/10.26701/ems.1486134

Abstract

The AA2024-T3 alloy is a lightweight and durable material commonly used in the aerospace industry. This study investigates the impact of the rolling direction (RD) and strain rates on the alloy’s tensile properties. Tensile tests have been performed on samples oriented parallel and transverse to the rolling direction at varying strain rates (5, 25, and 125 mm/min). Samples parallel to the rolling direction have exhibited higher strength compared to those in the transverse direction (TD). At a strain rate of 5 mm/min, the maximum tensile strength in RD samples has been 530.72 MPa, while in TD samples, it has been 505.76 MPa. At 25 mm/min, the tensile strength has been 498.31 MPa in RD and 482.91 MPa in TD. At 125 mm/min, the tensile strength has been 508.52 MPa in RD and 480.36 MPa in TD. The increase in strain rate has had a complex effect on the mechanical properties. The total elongation values have also varied with strain rate, with the highest total elongation observed at 5 mm/min (0.168) in both RD and TD directions. These findings have highlighted the significant impact of the rolling direction and strain rate on the mechanical properties of the AA2024-T3 alloy, which should be considered in design and manufacturing processes.

References

  • Liu, D., Liu, Z., & Wang, E. (2014). Effect of rolling reduction on microstructure, texture, mechanical properties and mechanical anisotropy of AZ31 magnesium alloys. Materials Science and Engineering: A, 612(1), 208-213. https://doi.org/10.1016/j.msea.2014.06.034
  • Wang, J., Jin, P., Li, X., Wei, F., Shi, B., Ding, X., & Zhang, M. (2020). Effect of rolling with different amounts of deformation on microstructure and mechanical properties of the Mg–1Al–4Y alloy. Materials Characterization, 161, 110149. https://doi.org/10.1016/j.matchar.2020.110149
  • Ma, Y., Du, Z., Cui, X., Cheng, J., Liu, G., Gong, T., Liu, H., Wang, X., & Chen, Y. (2018). Effect of cold rolling process on microstructure and mechanical properties of high strength β titanium alloy thin sheets. Progress in Natural Science: Materials International, 28(6), 711-717. https://doi.org/10.1016/j.pnsc.2018.10.004
  • Kacar, I., Öztürk, F., Toros, S., & Kılıç, S. (2020). Prediction of strain limits via the Marciniak-Kuczynski model and a novel semi-empirical forming limit diagram model for dual-phase DP600 advanced high strength steel. Strojniski Vestnik/Journal of Mechanical Engineering, 66(10), 602-612. https://doi.org/10.5545/sv-jme.2020.6755
  • Kilic, S., Ozturk, F., & Toros, S. (2020). Analysis of yield criteria and flow curves on FLC for TWIP900 steel. Experimental Techniques, 44(5), 597-612. https://doi.org/10.1007/s40799-020-00382-9
  • Khalifeh, A., Banaraki, A. D., Manesh, H. D., & Banaraki, M. D. (2018). Investigating of the tensile mechanical properties of structural steels at high strain rates. Materials Science and Engineering: A, 712(1), 232-239. https://doi.org/10.1016/j.msea.2017.11.025
  • Davies, R., & Magee, C. (1975). The effect of strain-rate upon the tensile deformation of materials. Journal of Materials Processing Technology, 1(1). https://doi.org/10.1115/1.3443275
  • Kılıç, S., & Demirdöğen, M. F. (2022). Investigation of the effect of temperature and strain rate on mechanical properties. International Journal of Engineering Research & Development (IJERAD), 14(2). https://doi.org/10.29137/umagd.987547
  • Kilic, S. (2019). Experimental and numerical investigation of the effect of different temperature and deformation speeds on mechanical properties and springback behaviour in Al-Zn-Mg-Cu alloy. Mechanics, 25(5), 406-412. https://doi.org/10.5755/j01.mech.25.5.22689
  • Ozturk, F., Toros, S., Bas, M. H., & Kilic, S. (2008). Evaluation of tensile properties of high strength steels at warm temperatures and various strain rates. Steel Research International, 79(2), 295.
  • Rout, M. (2020). Texture-tensile properties correlation of 304 austenitic stainless steel rolled with the change in rolling direction. Materials Research Express, 7(1), 016563. https://doi.org/10.1088/2053-1591/ab677c
  • Vegi, N., & Ragothaman, B. (2023). Effect of rolling direction and gauge length on the mechanical properties of S460MC high strength low alloy steel. SAE Technical Paper.
  • Medjahed, A., Moula, H., Zegaoui, A., Derradji, M., Henniche, A., Wu, R., Hou, L., Zhang, J., & Zhang, M. (2018). Influence of the rolling direction on the microstructure, mechanical, anisotropy and gamma rays shielding properties of an Al-Cu-Li-Mg-X alloy. Materials Science and Engineering: A, 732(1), 129-137. https://doi.org/10.1016/j.msea.2018.06.074
  • Ma, Q. L., Wang, D. C., Liu, H. M., & Lu, H. M. (2009). Effect of temper rolling on tensile properties of low-Si Al-killed sheet steel. Journal of Iron and Steel Research International, 16(3), 64-67. https://doi.org/10.1016/S1006-706X(09)60045-5
  • Kim, D. G., Son, H. T., Kim, D. W., Kim, Y. H., & Lee, K. M. (2011). Effect of cross-roll angle on microstructures and mechanical properties during cross-roll rolling in AZ31 alloys. Materials Transactions, 52(12), 2274-2277. https://doi.org/10.2320/matertrans.M2011260
  • Goli, F., & Jamaati, R. (2019). Effect of strain path during cold rolling on the microstructure, texture, and mechanical properties of AA2024 aluminum alloy. Materials Research Express, 6(6), 066514. https://doi.org/10.1088/2053-1591/ab0a1f
  • Pang, Y., Chen, B. K., & Liu, W. (2019). An investigation of plastic behaviour in cold-rolled aluminium alloy AA2024-T3 using laser speckle imaging sensor. The International Journal of Advanced Manufacturing Technology, 103(1), 2707-2724. https://doi.org/10.1007/s00170-019-03717-y
  • Aghabalaeivahid, A., & Shalvandi, M. (2021). Microstructure-based crystal plasticity modeling of AA2024-T3 aluminum alloy defined as the α-Al, θ-Al2Cu, and S-Al2CuMg phases based on real metallographic image. Materials Research Express, 8(10), 106521. https://doi.org/10.1088/2053-1591/ac2eac
  • Anijdan, S. M., Sadeghi-Nezhad, D., Lee, H., Shin, W., Park, N., Nayyeri, M., Jafarian, H., & Eivani, A. (2021). TEM study of S’hardening precipitates in the cold rolled and aged AA2024 aluminum alloy: Influence on the microstructural evolution, tensile properties & electrical conductivity. Journal of Materials Research and Technology, 13, 798-807. https://doi.org/10.1016/j.jmrt.2021.05.003
  • Sadeghi-Nezhad, D., Anijdan, S. M., Lee, H., Shin, W., Park, N., Nayyeri, M., & Jafarian, H. (2020). The effect of cold rolling, double aging and overaging processes on the tensile property and precipitation of AA2024 alloy. Journal of Materials Research and Technology, 9(6), 15475-15485. https://doi.org/10.1016/j.jmrt.2020.11.005
  • De Freitas, E., Ferracini Jr, E., & Ferrante, M. (2004). Microstructure and rheology of an AA2024 aluminium alloy in the semi-solid state, and mechanical properties of a back-extruded part. Journal of Materials Processing Technology, 146(2), 241-249. https://doi.org/10.1016/j.jmatprotec.2003.11.007
  • Khan, R. (2013). Anisotropic deformation behavior of Al2024T351 aluminum alloy. The Journal of Engineering Research [TJER], 10(1), 80-87. https://doi.org/10.24200/tjer.vol10iss1pp80-87
  • Najib, L. M., Alisibramulisi, A., Amin, N. M., Bakar, I. A. A., & Hasim, S. (2015). The effect of rolling direction to the tensile properties of AA5083 specimen. In CIEC 2014: Proceedings of the International Civil and Infrastructure Engineering Conference 2014 (pp. 779-787).
  • Bo, W., Chen, X. H., Pan, F. S., Mao, J. J., & Yong, F. (2015). Effects of cold rolling and heat treatment on microstructure and mechanical properties of AA 5052 aluminum alloy. Transactions of Nonferrous Metals Society of China, 25(8), 2481-2489. https://doi.org/10.1016/S1003-6326(15)63866-3
  • Hao, Z., Fu, X., Men, X., & Zhou, B. (2018). Study on tensile and fracture properties of 7050-T7451 aluminum alloy based on material forming texture characteristics. Materials Research Express, 6(3), 036502. https://doi.org/10.1088/2053-1591/aaf304
  • Hajlaoui, K., Stoica, M., LeMoulec, A., Charlot, F., & Yavari, A. (2008). Strain rate effect on deformation of Zr-based metallic glass: In-situ tensile deformation in SEM analysis. Rev. Adv. Mater. Sci, 18(1), 23-26.
  • Gómez-del Río, T., Salazar, A., & Rodríguez, J. (2012). Effect of strain rate and temperature on tensile properties of ethylene–propylene block copolymers. Materials & Design, 42, 301-307. https://doi.org/10.1016/j.matdes.2012.05.042
  • Wen, D., Wang, J., Wang, K., Xiong, Y., Huang, L., Zheng, Z., & Li, J. (2019). Hot tensile deformation and fracture behaviors of a typical ultrahigh strength steel. Vacuum, 169, 108863. https://doi.org/10.1016/j.vacuum.2019.108863
  • Kami, T., Yamada, H., & Ogasawara, N. (2018). Dynamic behaviour of Al-Mg aluminum alloy at a wide range of strain rates. EPJ Web of Conferences, 02028.
  • Ma, H., Huang, L., Tian, Y., & Li, J. (2014). Effects of strain rate on dynamic mechanical behavior and microstructure evolution of 5A02-O aluminum alloy. Materials Science and Engineering: A, 606(1), 233-239. https://doi.org/10.1016/j.msea.2014.03.081
  • Bobbili, R., Madhu, V., & Gogia, A. K. (2016). Tensile behaviour of aluminium 7017 alloy at various temperatures and strain rates. Journal of Materials Research and Technology, 5(2), 190-197. https://doi.org/10.1016/j.jmrt.2015.12.002
  • Chen, Y., Clausen, A., Hopperstad, O., & Langseth, M. (2009). Stress–strain behaviour of aluminium alloys at a wide range of strain rates. International Journal of Solids and Structures, 46(21), 3825-3835. https://doi.org/10.1016/j.ijsolstr.2009.07.013
  • Wang, X. F., Shi, T. Y., Wang, H. B., Zhou, S. Z., Peng, W. F., & Wang, Y. G. (2020). Effects of strain rate on mechanical properties, microstructure and texture of Al-Mg—Si—Cu alloy under tensile loading. Transactions of Nonferrous Metals Society of China, 30(1), 27-40. https://doi.org/10.1016/S1003-6326(19)65177-0
  • Tuncel, O., Aydin, H., Karpuz, M., & Aydin, Ö. (2019). The effect of rolling direction and strain rate on the tensile properties of DP450 and DP800 steels used in the automotive industry. Balıkesir Üniversitesi Fen Bilimleri Enstitüsü Dergisi, 21(1), 323-335. https://doi.org/10.25092/baunfbed.547191
  • Aydın, H., Tunçel, O., Yiğit, K., Balamur, F., Çavuşoğlu, O., & Düzgün, O. (2017). The effect of rolling direction and strain rate on the tensile properties of AA6082-T6 and AA1035-H14 aluminum alloys. Uludağ Üniversitesi Mühendislik Fakültesi Dergisi, 22(3), 81-96. https://doi.org/10.17482/uumfd.297265
  • Hughes, A. E., Parvizi, R., & Forsyth, M. (2015). Microstructure and corrosion of AA2024. Corrosion Reviews, 33(1-2), 1-30. https://doi.org/10.1515/corrrev-2014-0039
  • Miramontes, J. C., Gaona Tiburcio, C., García Mata, E., Esneider Alcála, M. Á., Maldonado-Bandala, E., Lara-Banda, M., Nieves-Mendoza, D., Olguín-Coca, J., Zambrano-Robledo, P., López-León, L. D., & Almeraya Calderón, F. (2022). Corrosion resistance of aluminum alloy AA2024 with hard anodizing in sulfuric acid-free solution. Materials, 15(18), 6401. https://doi.org/10.3390/ma15186401
  • ASTM. (2016). ASTM E8/E8M-16a: Standard test methods for tension testing of metallic materials. West Conshohocken, PA, USA: ASTM International.
  • Shamchi, S. P., Queirós de Melo, F. J. M., Tavares, P. J., & Moreira, P. M. G. P. (2019). Thermomechanical characterization of Alclad AA2024-T3 aluminum alloy using split Hopkinson tension bar. Mechanics of Materials, 139, 103198. https://doi.org/10.1016/j.mechmat.2019.103198
  • Park, C. M., Jung, J., Yu, B. C., & Park, Y. H. (2019). Anisotropy of the wear and mechanical properties of extruded aluminum alloy rods (AA2024-T4). Metals and Materials International, 25(1), 71-82. https://doi.org/10.1007/s12540-018-0164-x
  • Ebrahimi, G. R., Zarei-Hanzaki, A., Haghshenas, M., & Arabshahi, H. (2008). The effect of heat treatment on hot deformation behaviour of Al 2024. Journal of Materials Processing Technology, 206(1), 25-29. https://doi.org/10.1016/j.jmatprotec.2007.11.261
  • Pandouria, A. K., Yadav, K., & Tiwari, V. (2023). Compressive and tensile behavior of AA2014-T6 under different strain rates and different temperatures. Structures, 49, 12-25. https://doi.org/10.1016/j.istruc.2023.01.084
Year 2024, , 145 - 152, 20.09.2024
https://doi.org/10.26701/ems.1486134

Abstract

References

  • Liu, D., Liu, Z., & Wang, E. (2014). Effect of rolling reduction on microstructure, texture, mechanical properties and mechanical anisotropy of AZ31 magnesium alloys. Materials Science and Engineering: A, 612(1), 208-213. https://doi.org/10.1016/j.msea.2014.06.034
  • Wang, J., Jin, P., Li, X., Wei, F., Shi, B., Ding, X., & Zhang, M. (2020). Effect of rolling with different amounts of deformation on microstructure and mechanical properties of the Mg–1Al–4Y alloy. Materials Characterization, 161, 110149. https://doi.org/10.1016/j.matchar.2020.110149
  • Ma, Y., Du, Z., Cui, X., Cheng, J., Liu, G., Gong, T., Liu, H., Wang, X., & Chen, Y. (2018). Effect of cold rolling process on microstructure and mechanical properties of high strength β titanium alloy thin sheets. Progress in Natural Science: Materials International, 28(6), 711-717. https://doi.org/10.1016/j.pnsc.2018.10.004
  • Kacar, I., Öztürk, F., Toros, S., & Kılıç, S. (2020). Prediction of strain limits via the Marciniak-Kuczynski model and a novel semi-empirical forming limit diagram model for dual-phase DP600 advanced high strength steel. Strojniski Vestnik/Journal of Mechanical Engineering, 66(10), 602-612. https://doi.org/10.5545/sv-jme.2020.6755
  • Kilic, S., Ozturk, F., & Toros, S. (2020). Analysis of yield criteria and flow curves on FLC for TWIP900 steel. Experimental Techniques, 44(5), 597-612. https://doi.org/10.1007/s40799-020-00382-9
  • Khalifeh, A., Banaraki, A. D., Manesh, H. D., & Banaraki, M. D. (2018). Investigating of the tensile mechanical properties of structural steels at high strain rates. Materials Science and Engineering: A, 712(1), 232-239. https://doi.org/10.1016/j.msea.2017.11.025
  • Davies, R., & Magee, C. (1975). The effect of strain-rate upon the tensile deformation of materials. Journal of Materials Processing Technology, 1(1). https://doi.org/10.1115/1.3443275
  • Kılıç, S., & Demirdöğen, M. F. (2022). Investigation of the effect of temperature and strain rate on mechanical properties. International Journal of Engineering Research & Development (IJERAD), 14(2). https://doi.org/10.29137/umagd.987547
  • Kilic, S. (2019). Experimental and numerical investigation of the effect of different temperature and deformation speeds on mechanical properties and springback behaviour in Al-Zn-Mg-Cu alloy. Mechanics, 25(5), 406-412. https://doi.org/10.5755/j01.mech.25.5.22689
  • Ozturk, F., Toros, S., Bas, M. H., & Kilic, S. (2008). Evaluation of tensile properties of high strength steels at warm temperatures and various strain rates. Steel Research International, 79(2), 295.
  • Rout, M. (2020). Texture-tensile properties correlation of 304 austenitic stainless steel rolled with the change in rolling direction. Materials Research Express, 7(1), 016563. https://doi.org/10.1088/2053-1591/ab677c
  • Vegi, N., & Ragothaman, B. (2023). Effect of rolling direction and gauge length on the mechanical properties of S460MC high strength low alloy steel. SAE Technical Paper.
  • Medjahed, A., Moula, H., Zegaoui, A., Derradji, M., Henniche, A., Wu, R., Hou, L., Zhang, J., & Zhang, M. (2018). Influence of the rolling direction on the microstructure, mechanical, anisotropy and gamma rays shielding properties of an Al-Cu-Li-Mg-X alloy. Materials Science and Engineering: A, 732(1), 129-137. https://doi.org/10.1016/j.msea.2018.06.074
  • Ma, Q. L., Wang, D. C., Liu, H. M., & Lu, H. M. (2009). Effect of temper rolling on tensile properties of low-Si Al-killed sheet steel. Journal of Iron and Steel Research International, 16(3), 64-67. https://doi.org/10.1016/S1006-706X(09)60045-5
  • Kim, D. G., Son, H. T., Kim, D. W., Kim, Y. H., & Lee, K. M. (2011). Effect of cross-roll angle on microstructures and mechanical properties during cross-roll rolling in AZ31 alloys. Materials Transactions, 52(12), 2274-2277. https://doi.org/10.2320/matertrans.M2011260
  • Goli, F., & Jamaati, R. (2019). Effect of strain path during cold rolling on the microstructure, texture, and mechanical properties of AA2024 aluminum alloy. Materials Research Express, 6(6), 066514. https://doi.org/10.1088/2053-1591/ab0a1f
  • Pang, Y., Chen, B. K., & Liu, W. (2019). An investigation of plastic behaviour in cold-rolled aluminium alloy AA2024-T3 using laser speckle imaging sensor. The International Journal of Advanced Manufacturing Technology, 103(1), 2707-2724. https://doi.org/10.1007/s00170-019-03717-y
  • Aghabalaeivahid, A., & Shalvandi, M. (2021). Microstructure-based crystal plasticity modeling of AA2024-T3 aluminum alloy defined as the α-Al, θ-Al2Cu, and S-Al2CuMg phases based on real metallographic image. Materials Research Express, 8(10), 106521. https://doi.org/10.1088/2053-1591/ac2eac
  • Anijdan, S. M., Sadeghi-Nezhad, D., Lee, H., Shin, W., Park, N., Nayyeri, M., Jafarian, H., & Eivani, A. (2021). TEM study of S’hardening precipitates in the cold rolled and aged AA2024 aluminum alloy: Influence on the microstructural evolution, tensile properties & electrical conductivity. Journal of Materials Research and Technology, 13, 798-807. https://doi.org/10.1016/j.jmrt.2021.05.003
  • Sadeghi-Nezhad, D., Anijdan, S. M., Lee, H., Shin, W., Park, N., Nayyeri, M., & Jafarian, H. (2020). The effect of cold rolling, double aging and overaging processes on the tensile property and precipitation of AA2024 alloy. Journal of Materials Research and Technology, 9(6), 15475-15485. https://doi.org/10.1016/j.jmrt.2020.11.005
  • De Freitas, E., Ferracini Jr, E., & Ferrante, M. (2004). Microstructure and rheology of an AA2024 aluminium alloy in the semi-solid state, and mechanical properties of a back-extruded part. Journal of Materials Processing Technology, 146(2), 241-249. https://doi.org/10.1016/j.jmatprotec.2003.11.007
  • Khan, R. (2013). Anisotropic deformation behavior of Al2024T351 aluminum alloy. The Journal of Engineering Research [TJER], 10(1), 80-87. https://doi.org/10.24200/tjer.vol10iss1pp80-87
  • Najib, L. M., Alisibramulisi, A., Amin, N. M., Bakar, I. A. A., & Hasim, S. (2015). The effect of rolling direction to the tensile properties of AA5083 specimen. In CIEC 2014: Proceedings of the International Civil and Infrastructure Engineering Conference 2014 (pp. 779-787).
  • Bo, W., Chen, X. H., Pan, F. S., Mao, J. J., & Yong, F. (2015). Effects of cold rolling and heat treatment on microstructure and mechanical properties of AA 5052 aluminum alloy. Transactions of Nonferrous Metals Society of China, 25(8), 2481-2489. https://doi.org/10.1016/S1003-6326(15)63866-3
  • Hao, Z., Fu, X., Men, X., & Zhou, B. (2018). Study on tensile and fracture properties of 7050-T7451 aluminum alloy based on material forming texture characteristics. Materials Research Express, 6(3), 036502. https://doi.org/10.1088/2053-1591/aaf304
  • Hajlaoui, K., Stoica, M., LeMoulec, A., Charlot, F., & Yavari, A. (2008). Strain rate effect on deformation of Zr-based metallic glass: In-situ tensile deformation in SEM analysis. Rev. Adv. Mater. Sci, 18(1), 23-26.
  • Gómez-del Río, T., Salazar, A., & Rodríguez, J. (2012). Effect of strain rate and temperature on tensile properties of ethylene–propylene block copolymers. Materials & Design, 42, 301-307. https://doi.org/10.1016/j.matdes.2012.05.042
  • Wen, D., Wang, J., Wang, K., Xiong, Y., Huang, L., Zheng, Z., & Li, J. (2019). Hot tensile deformation and fracture behaviors of a typical ultrahigh strength steel. Vacuum, 169, 108863. https://doi.org/10.1016/j.vacuum.2019.108863
  • Kami, T., Yamada, H., & Ogasawara, N. (2018). Dynamic behaviour of Al-Mg aluminum alloy at a wide range of strain rates. EPJ Web of Conferences, 02028.
  • Ma, H., Huang, L., Tian, Y., & Li, J. (2014). Effects of strain rate on dynamic mechanical behavior and microstructure evolution of 5A02-O aluminum alloy. Materials Science and Engineering: A, 606(1), 233-239. https://doi.org/10.1016/j.msea.2014.03.081
  • Bobbili, R., Madhu, V., & Gogia, A. K. (2016). Tensile behaviour of aluminium 7017 alloy at various temperatures and strain rates. Journal of Materials Research and Technology, 5(2), 190-197. https://doi.org/10.1016/j.jmrt.2015.12.002
  • Chen, Y., Clausen, A., Hopperstad, O., & Langseth, M. (2009). Stress–strain behaviour of aluminium alloys at a wide range of strain rates. International Journal of Solids and Structures, 46(21), 3825-3835. https://doi.org/10.1016/j.ijsolstr.2009.07.013
  • Wang, X. F., Shi, T. Y., Wang, H. B., Zhou, S. Z., Peng, W. F., & Wang, Y. G. (2020). Effects of strain rate on mechanical properties, microstructure and texture of Al-Mg—Si—Cu alloy under tensile loading. Transactions of Nonferrous Metals Society of China, 30(1), 27-40. https://doi.org/10.1016/S1003-6326(19)65177-0
  • Tuncel, O., Aydin, H., Karpuz, M., & Aydin, Ö. (2019). The effect of rolling direction and strain rate on the tensile properties of DP450 and DP800 steels used in the automotive industry. Balıkesir Üniversitesi Fen Bilimleri Enstitüsü Dergisi, 21(1), 323-335. https://doi.org/10.25092/baunfbed.547191
  • Aydın, H., Tunçel, O., Yiğit, K., Balamur, F., Çavuşoğlu, O., & Düzgün, O. (2017). The effect of rolling direction and strain rate on the tensile properties of AA6082-T6 and AA1035-H14 aluminum alloys. Uludağ Üniversitesi Mühendislik Fakültesi Dergisi, 22(3), 81-96. https://doi.org/10.17482/uumfd.297265
  • Hughes, A. E., Parvizi, R., & Forsyth, M. (2015). Microstructure and corrosion of AA2024. Corrosion Reviews, 33(1-2), 1-30. https://doi.org/10.1515/corrrev-2014-0039
  • Miramontes, J. C., Gaona Tiburcio, C., García Mata, E., Esneider Alcála, M. Á., Maldonado-Bandala, E., Lara-Banda, M., Nieves-Mendoza, D., Olguín-Coca, J., Zambrano-Robledo, P., López-León, L. D., & Almeraya Calderón, F. (2022). Corrosion resistance of aluminum alloy AA2024 with hard anodizing in sulfuric acid-free solution. Materials, 15(18), 6401. https://doi.org/10.3390/ma15186401
  • ASTM. (2016). ASTM E8/E8M-16a: Standard test methods for tension testing of metallic materials. West Conshohocken, PA, USA: ASTM International.
  • Shamchi, S. P., Queirós de Melo, F. J. M., Tavares, P. J., & Moreira, P. M. G. P. (2019). Thermomechanical characterization of Alclad AA2024-T3 aluminum alloy using split Hopkinson tension bar. Mechanics of Materials, 139, 103198. https://doi.org/10.1016/j.mechmat.2019.103198
  • Park, C. M., Jung, J., Yu, B. C., & Park, Y. H. (2019). Anisotropy of the wear and mechanical properties of extruded aluminum alloy rods (AA2024-T4). Metals and Materials International, 25(1), 71-82. https://doi.org/10.1007/s12540-018-0164-x
  • Ebrahimi, G. R., Zarei-Hanzaki, A., Haghshenas, M., & Arabshahi, H. (2008). The effect of heat treatment on hot deformation behaviour of Al 2024. Journal of Materials Processing Technology, 206(1), 25-29. https://doi.org/10.1016/j.jmatprotec.2007.11.261
  • Pandouria, A. K., Yadav, K., & Tiwari, V. (2023). Compressive and tensile behavior of AA2014-T6 under different strain rates and different temperatures. Structures, 49, 12-25. https://doi.org/10.1016/j.istruc.2023.01.084
There are 42 citations in total.

Details

Primary Language English
Subjects Material Design and Behaviors
Journal Section Research Article
Authors

Mehmet Fatih Demirdöğen 0000-0002-0545-3733

Süleyman Kılıç 0000-0002-1681-9403

Early Pub Date June 30, 2024
Publication Date September 20, 2024
Submission Date May 18, 2024
Acceptance Date June 28, 2024
Published in Issue Year 2024

Cite

APA Demirdöğen, M. F., & Kılıç, S. (2024). The effect of rolling direction and strain rates on the tensile properties of AA2024-T3 aluminum alloy. European Mechanical Science, 8(3), 145-152. https://doi.org/10.26701/ems.1486134

Dergi TR Dizin'de Taranmaktadır.

Flag Counter