Research Article
BibTex RIS Cite

Mechanical analysis of al/foam composite sandwich panels under elastic and elastoplastic states

Year 2024, , 167 - 178, 20.09.2024
https://doi.org/10.26701/ems.1491014

Abstract

This study performs mechanical analysis for Al/Foam composite sandwich panels under 3-point bending using numerically and experimentally. The flexural rigidity, elastic deflections, and normal, shear stresses are obtained by analytical calculations of the Timoshenko beam equation and compared finite element (FE) models for 3-point bending loading conditions. The FE models are constructed using 2D single-layer shell and 3D solid discrete-layer models. The validity of FE models at the analysis is evaluated for Al/PVC Foam sandwich composites for the elastic state. The experimental bending results of Al/XPS Foam sandwich composites are compared with numerical models at elastic and elastoplastic states. The elastic results indicate that the out-of-plane deflection results agree well across numerical and analytical models. Normal stresses at the core are higher in 3D discrete-layer solid models compared to laminated shell theory-based models for thick plates, due to the more accurate characteristics of the discrete-layer solid models. The Timoshenko beam theory-based analytical bending results show a good correlation with the results from laminated shell theory-based finite element method (FEM) analyses. Elastoplastic FEM analysis indicates that discrete-layer-based 3D solid FEM models effectively predict local effects dependent on indentation failure.

References

  • Kaw, A. K. (2006). Mechanics of composite materials (2nd ed.). Taylor and Francis.
  • Gay, D., Hoa, S. V., & Tsai, S. W. (2003). Composite materials: Design and applications. CRC Press.
  • Tunca, E., & Kafalı, H. (2021). Compression and three-point bending analyses of aerospace sandwich composites produced with polymeric core materials using Ansys. European Journal of Science and Technology, 31(1), 553–561. https://doi.org/10.31590/ejosat.1012658
  • Liew, K. M., Pan, Z. Z., & Zhang, L. W. (2019). An overview of layerwise theories for composite laminates and structures: Development, numerical implementation, and application. Composite Structures, 216, 240–259. https://doi.org/10.1016/j.compstruct.2019.02.074
  • Matsunaga, H. (2004). A comparison between 2-D single-layer and 3-D layerwise theories for computing interlaminar stresses of laminated composite and sandwich plates subjected to thermal loadings. Composite Structures, 64, 161–177. https://doi.org/10.1016/j.compstruct.2003.08.001
  • Rao, K. P. (1978). A rectangular laminated anisotropic shallow thin shell finite element. Computer Methods in Applied Mechanics and Engineering, 15(1), 13–33. https://doi.org/10.1016/0045-7825(78)90003-8
  • Saigal, S., Kapania, R. K., & Yang, T. Y. (1986). Geometrically nonlinear finite element analysis of imperfect laminated shells. Journal of Composite Materials, 20(2), 197–214. https://doi.org/10.1177/002199838602000206
  • Kreja, I. (2011). A literature review on computational models for laminated composite and sandwich panels. Central European Journal of Engineering, 1(1), 59–80. https://doi.org/10.2478/s13531-011-0005-x
  • Reddy, J. N. (2002). Energy principles and variational methods in applied mechanics. John Wiley and Sons.
  • Pagano, N. J. (1970). Exact solutions for rectangular bidirectional composites and sandwich plates. Journal of Composite Materials, 4(1), 20–34. https://doi.org/10.1177/002199837000400103
  • Li, D. (2021). Layerwise theories of laminated composite structures and their applications: A review. Archives of Computational Methods in Engineering, 28, 577–600. https://doi.org/10.1007/s11831-019-09392-2
  • Reddy, J. N. (1987). A generalization of two-dimensional theories of laminated composite plates. Communications in Applied Numerical Methods, 3, 173–180. https://doi.org/10.1002/cnm.1630030303
  • Yang, C., Chen, J., & Zhao, S. (2013). The interlaminar stress of laminated composite under uniform axial deformation. Modeling and Numerical Simulation of Material Science, 3(2), 49–60. https://doi.org/10.4236/mnsms.2013.32007
  • Mawenya, A. S., & Davies, J. D. (1974). Finite element bending analysis of multilayer plates. International Journal for Numerical Methods in Engineering, 8, 215–225. https://doi.org/10.1002/nme.1620080203
  • Reddy, J. N. (1989). On refined computational models of composite laminates. International Journal for Numerical Methods in Engineering, 27, 361–382. https://doi.org/10.1002/nme.1620270210
  • Ashby, M. F., Evans, A. G., Fleck, N. A., Gibson, L. J., Hutchinson, J. W., & Wadley, H. N. G. (2000). Metal foams: A design guide. Butterworth Heinemann.
  • Daniel, I. M., Gdoutos, E. E., Wang, K. A., & Abot, J. L. (2002). Failure modes of composite sandwich beams. International Journal of Damage Mechanics, 11(4), 309–334. https://doi.org/10.1106/105678902027247
  • Uzay, Ç., & Geren, N. (2020). Failure analysis of low-density polymer foam core sandwich structures under three-point bending loading. Çukurova University Journal of the Faculty of Engineering and Architecture, 35(1), 49–58. https://doi.org/10.21605/cukurovaummfd.764547
  • Staal, R. A. (2006). Failure of sandwich honeycomb panels in bending (PhD thesis). The University of Auckland, New Zealand.
  • Abrate, S., Ferrero, J. F., & Navarro, P. (2015). Cohesive zone models and impact damage predictions for composite structures. Meccanica, 50, 2587–2620. https://doi.org/10.1007/s11012-015-0221-1
  • Höwer, D., Lerch, B. A., Bednarcyk, B. A., Pineda, E. J., Reese, S., & Simon, J. W. (2018). Cohesive zone modeling for mode I facesheet to core delamination of sandwich panels accounting for fiber bridging. Composite Structures, 183, 568–581. https://doi.org/10.1016/j.compstruct.2017.07.005
  • Eruslu, S. O., & Aydogdu, M. (2009). Vibration analysis of inclusion reinforced composite square plates under various boundary conditions. Journal of Reinforced Plastics and Composites, 28, 995–1012. https://doi.org/10.1177/07316844070877
  • Karamanlı, A. (2018). Flexure analysis of laminated composite and sandwich beams using Timoshenko beam theory. Journal of Polytechnic, 21(3), 633–643. https://doi.org/10.2339/politeknik.386958
  • Reddy, J. N. (2004). Mechanics of laminated composite plates and shells: Theory and analysis (2nd ed.). CRC Press.
  • McCormack, T. M. (1999). Failure of structural sandwich beams with metallic foam cores (MSc thesis). Massachusetts Institute of Technology, United States of America.
  • Studzinski, R., Pozorski, Z., & Garstecki, A. (2009). Optimal design of sandwich panels with a soft core. Journal of Theoretical and Applied Mechanics, 47(3), 685–699.
  • Manet, V. (1998). The use of ANSYS to calculate the behavior of sandwich structures. Composites Science and Technology, 58(12), 1899–1905. https://doi.org/10.1016/S0266-3538(98)00010-4
  • Kaboglu, C., Yu, L., Mohagheghian, I., Blackman, B. R. K., Kinloch, A. J., & Dear, J. P. (2018). Effects of the core density on the quasi-static flexural and ballistic performance of fiber-composite skin/foam core sandwich structures. Journal of Material Science, 58, 16393–16414. https://doi.org/10.1007/s10853-018-2799-x
  • Çınar, K. (2018). Evaluation of sandwich panels with composite tube-reinforced foam core under bending and flatwise compression. Journal of Sandwich Structures and Materials, 22(2), 480–493. https://doi.org/10.1177/1099636218798161
  • Eruslu, S. Ö. (2018). The effect of particle type and distribution on bending analysis of glass particle reinforced composite beams. CRPASE: Transactions of Mechanical Engineering, 6, 1–5.
  • Kholkin, A. (2012). Numerical simulation of damage and failure of laminated 3-point bending specimens (PhD thesis). Vienna University of Technology, Austria.
  • Radhakrishnan, G., Breaz, D., Al Hattali, A. H. M. S., Al Yahyai, A. M. N., Al Riyami, A. M. N. O., Al Hadhrami, A. M. D., & Karthikayen, K. R. (2023). Influence of aspect ratio on the flexural and buckling behavior of an aluminum sandwich composite: A numerical and experimental approach. Materials, 16(19), 1–11. https://doi.org/10.3390/ma16196544
  • Alshahrani, A., & Ahmed, A. (2022). Study on flexural behavior of glass fiber reinforced plastic sandwich composites using liquid thermoplastic resin. Polymers, 14(19), 1–20. https://doi.org/10.3390/polym14194045
  • Wang, B., Shi, Y., Zhou, C., & Li, T. (2016). Failure mechanism of PMI foam core sandwich beam in bending. International Journal of Simulation and Multidisciplinary Design Optimization, 6, A8:1–11. https://doi.org/10.1051/smdo/2015008
Year 2024, , 167 - 178, 20.09.2024
https://doi.org/10.26701/ems.1491014

Abstract

References

  • Kaw, A. K. (2006). Mechanics of composite materials (2nd ed.). Taylor and Francis.
  • Gay, D., Hoa, S. V., & Tsai, S. W. (2003). Composite materials: Design and applications. CRC Press.
  • Tunca, E., & Kafalı, H. (2021). Compression and three-point bending analyses of aerospace sandwich composites produced with polymeric core materials using Ansys. European Journal of Science and Technology, 31(1), 553–561. https://doi.org/10.31590/ejosat.1012658
  • Liew, K. M., Pan, Z. Z., & Zhang, L. W. (2019). An overview of layerwise theories for composite laminates and structures: Development, numerical implementation, and application. Composite Structures, 216, 240–259. https://doi.org/10.1016/j.compstruct.2019.02.074
  • Matsunaga, H. (2004). A comparison between 2-D single-layer and 3-D layerwise theories for computing interlaminar stresses of laminated composite and sandwich plates subjected to thermal loadings. Composite Structures, 64, 161–177. https://doi.org/10.1016/j.compstruct.2003.08.001
  • Rao, K. P. (1978). A rectangular laminated anisotropic shallow thin shell finite element. Computer Methods in Applied Mechanics and Engineering, 15(1), 13–33. https://doi.org/10.1016/0045-7825(78)90003-8
  • Saigal, S., Kapania, R. K., & Yang, T. Y. (1986). Geometrically nonlinear finite element analysis of imperfect laminated shells. Journal of Composite Materials, 20(2), 197–214. https://doi.org/10.1177/002199838602000206
  • Kreja, I. (2011). A literature review on computational models for laminated composite and sandwich panels. Central European Journal of Engineering, 1(1), 59–80. https://doi.org/10.2478/s13531-011-0005-x
  • Reddy, J. N. (2002). Energy principles and variational methods in applied mechanics. John Wiley and Sons.
  • Pagano, N. J. (1970). Exact solutions for rectangular bidirectional composites and sandwich plates. Journal of Composite Materials, 4(1), 20–34. https://doi.org/10.1177/002199837000400103
  • Li, D. (2021). Layerwise theories of laminated composite structures and their applications: A review. Archives of Computational Methods in Engineering, 28, 577–600. https://doi.org/10.1007/s11831-019-09392-2
  • Reddy, J. N. (1987). A generalization of two-dimensional theories of laminated composite plates. Communications in Applied Numerical Methods, 3, 173–180. https://doi.org/10.1002/cnm.1630030303
  • Yang, C., Chen, J., & Zhao, S. (2013). The interlaminar stress of laminated composite under uniform axial deformation. Modeling and Numerical Simulation of Material Science, 3(2), 49–60. https://doi.org/10.4236/mnsms.2013.32007
  • Mawenya, A. S., & Davies, J. D. (1974). Finite element bending analysis of multilayer plates. International Journal for Numerical Methods in Engineering, 8, 215–225. https://doi.org/10.1002/nme.1620080203
  • Reddy, J. N. (1989). On refined computational models of composite laminates. International Journal for Numerical Methods in Engineering, 27, 361–382. https://doi.org/10.1002/nme.1620270210
  • Ashby, M. F., Evans, A. G., Fleck, N. A., Gibson, L. J., Hutchinson, J. W., & Wadley, H. N. G. (2000). Metal foams: A design guide. Butterworth Heinemann.
  • Daniel, I. M., Gdoutos, E. E., Wang, K. A., & Abot, J. L. (2002). Failure modes of composite sandwich beams. International Journal of Damage Mechanics, 11(4), 309–334. https://doi.org/10.1106/105678902027247
  • Uzay, Ç., & Geren, N. (2020). Failure analysis of low-density polymer foam core sandwich structures under three-point bending loading. Çukurova University Journal of the Faculty of Engineering and Architecture, 35(1), 49–58. https://doi.org/10.21605/cukurovaummfd.764547
  • Staal, R. A. (2006). Failure of sandwich honeycomb panels in bending (PhD thesis). The University of Auckland, New Zealand.
  • Abrate, S., Ferrero, J. F., & Navarro, P. (2015). Cohesive zone models and impact damage predictions for composite structures. Meccanica, 50, 2587–2620. https://doi.org/10.1007/s11012-015-0221-1
  • Höwer, D., Lerch, B. A., Bednarcyk, B. A., Pineda, E. J., Reese, S., & Simon, J. W. (2018). Cohesive zone modeling for mode I facesheet to core delamination of sandwich panels accounting for fiber bridging. Composite Structures, 183, 568–581. https://doi.org/10.1016/j.compstruct.2017.07.005
  • Eruslu, S. O., & Aydogdu, M. (2009). Vibration analysis of inclusion reinforced composite square plates under various boundary conditions. Journal of Reinforced Plastics and Composites, 28, 995–1012. https://doi.org/10.1177/07316844070877
  • Karamanlı, A. (2018). Flexure analysis of laminated composite and sandwich beams using Timoshenko beam theory. Journal of Polytechnic, 21(3), 633–643. https://doi.org/10.2339/politeknik.386958
  • Reddy, J. N. (2004). Mechanics of laminated composite plates and shells: Theory and analysis (2nd ed.). CRC Press.
  • McCormack, T. M. (1999). Failure of structural sandwich beams with metallic foam cores (MSc thesis). Massachusetts Institute of Technology, United States of America.
  • Studzinski, R., Pozorski, Z., & Garstecki, A. (2009). Optimal design of sandwich panels with a soft core. Journal of Theoretical and Applied Mechanics, 47(3), 685–699.
  • Manet, V. (1998). The use of ANSYS to calculate the behavior of sandwich structures. Composites Science and Technology, 58(12), 1899–1905. https://doi.org/10.1016/S0266-3538(98)00010-4
  • Kaboglu, C., Yu, L., Mohagheghian, I., Blackman, B. R. K., Kinloch, A. J., & Dear, J. P. (2018). Effects of the core density on the quasi-static flexural and ballistic performance of fiber-composite skin/foam core sandwich structures. Journal of Material Science, 58, 16393–16414. https://doi.org/10.1007/s10853-018-2799-x
  • Çınar, K. (2018). Evaluation of sandwich panels with composite tube-reinforced foam core under bending and flatwise compression. Journal of Sandwich Structures and Materials, 22(2), 480–493. https://doi.org/10.1177/1099636218798161
  • Eruslu, S. Ö. (2018). The effect of particle type and distribution on bending analysis of glass particle reinforced composite beams. CRPASE: Transactions of Mechanical Engineering, 6, 1–5.
  • Kholkin, A. (2012). Numerical simulation of damage and failure of laminated 3-point bending specimens (PhD thesis). Vienna University of Technology, Austria.
  • Radhakrishnan, G., Breaz, D., Al Hattali, A. H. M. S., Al Yahyai, A. M. N., Al Riyami, A. M. N. O., Al Hadhrami, A. M. D., & Karthikayen, K. R. (2023). Influence of aspect ratio on the flexural and buckling behavior of an aluminum sandwich composite: A numerical and experimental approach. Materials, 16(19), 1–11. https://doi.org/10.3390/ma16196544
  • Alshahrani, A., & Ahmed, A. (2022). Study on flexural behavior of glass fiber reinforced plastic sandwich composites using liquid thermoplastic resin. Polymers, 14(19), 1–20. https://doi.org/10.3390/polym14194045
  • Wang, B., Shi, Y., Zhou, C., & Li, T. (2016). Failure mechanism of PMI foam core sandwich beam in bending. International Journal of Simulation and Multidisciplinary Design Optimization, 6, A8:1–11. https://doi.org/10.1051/smdo/2015008
There are 34 citations in total.

Details

Primary Language English
Subjects Material Design and Behaviors
Journal Section Research Article
Authors

Sait Özmen Eruslu 0000-0003-2942-378X

Early Pub Date August 10, 2024
Publication Date September 20, 2024
Submission Date May 27, 2024
Acceptance Date July 19, 2024
Published in Issue Year 2024

Cite

APA Eruslu, S. Ö. (2024). Mechanical analysis of al/foam composite sandwich panels under elastic and elastoplastic states. European Mechanical Science, 8(3), 167-178. https://doi.org/10.26701/ems.1491014

Dergi TR Dizin'de Taranmaktadır.

Flag Counter