Research Article
BibTex RIS Cite

Tunable magnetic-luminescent Tb:SiO2@Fe3O4 nanoparticles for theranostic applications

Year 2025, Volume: 9 Issue: 4, 313 - 319, 28.12.2025

Abstract

Magnetic-luminescent Tb-doped SiO2@Fe3O4 core@shell nanoparticles were synthesized via a two-step approach and evaluated for biomedical applications. Photoluminescence (PL) analysis showed broad emissions from the SiO2 matrix and distinct Tb3+-related peaks at 543–621 nm, corresponding to 5D4-7Fj (j=5,4,3) transitions. Increasing Tb content led to enhanced PL intensity and crystallinity. Vibrating sample magnetometer (VSM) confirmed superparamagnetic behavior, with high saturation magnetization values—45.53 emu/g for 1% and 36.93 emu/g for 3 mol. % Tb-doped samples—exceeding values reported in prior studies. The inverse relationship between Tb concentration and magnetization is attributed to 3d–4f orbital interactions and enhanced magneto-crystalline anisotropy. These multifunctional nanoparticles, combining high magnetic responsiveness and optical traceability, demonstrate strong potential for use in non-invasive, image-guided therapies, marking a significant advancement in multifunctional nanomedicine

References

  • Khan, L.U., Muraca, D., Brito, H.F., Moscoso-Londono, O., Felinto, M.C.F.C., Pirota, K.R., Teotonio, E.E.S., & Malta, O.L. (2016). Optical and magnetic nanocomposites containing Fe3O4@SiO2 grafted with Eu3+ and Tb3+ complexes. Journal of Alloys and Compounds, 686, 453–466. [https://doi.org/10.1016/j.jallcom.2016.06.009](https://doi.org/10.1016/j.jallcom.2016.06.009)
  • Curcio, A., Silva, A.K.A., Cabana, S., Espinosa, A., Baptiste, B., Menguy, N., Wilhelm, C., & Abou-Hassan, A., (2019). Iron oxide nanoflowers@CuS hybrids for cancer tri-therapy: Interplay of photothermal therapy, magnetic hyperthermia and photodynamic therapy, Theranostics, 9(5), 1288–1302. [https://doi.org/10.7150/thno.30238](https://doi.org/10.7150/thno.30238)
  • Sabale, S., Jadhav, V., Mane-Gavade, S., & Yu, X.Y., (2019). Superparamagnetic CoFe2O4@Au with high specific absorption rate and intrinsic loss power for magnetic fluid hyperthermia applications, Acta Metallurgica Sinica (English Letters), 32, 719–725. [https://doi.org/10.1007/s40195-018-0830-5](https://doi.org/10.1007/s40195-018-0830-5)
  • Heikham F. D., & Thiyam, D. S., (2017). Fabrication of spherical magneto-luminescent hybrid MnFe2O4@YPO4:5Eu3+ nanoparticles for hyperthermia application, ChemistrySelect, 2(31), 10010–10019. [https://doi.org/10.1002/slct.201701619](https://doi.org/10.1002/slct.201701619)
  • Abu-Dief, A. M., Nassar, I. F., & Elsayed,- W. H., (2016). Magnetic NiFe2O4 nanoparticles: efficient, heterogeneous and reusable catalyst for synthesis of acetylferrocene chalcones and their anti-tumour activity, Applied Organometallic Chemistry, 30 (11), 917–923. [https://doi.org/10.1002/aoc.3521](https://doi.org/10.1002/aoc.3521)
  • Shrivastava, N., Shad, N. A., Sajid, M. M., Duong, A., & Sharma, S. K., (2020). Design of magnetic-luminescent nanoplatforms: applications in theranostics and drug delivery. Magnetic Nanoheterostructures, Springer 287–315. [https://doi.org/10.1007/978-3-030-39923-8_9](https://doi.org/10.1007/978-3-030-39923-8_9)
  • Mi, C., Zhang, J., Gao, H., Wu, X., Wang, M., Wu, Y., Di, Y., Xu, Z., Mao, C.,  & Xu S., (2010). Multifunctional nanocomposites of superparamagnetic (Fe3O4) and NIR-responsive rare earth-doped up-conversion fluorescent (NaYF4:Yb,Er) nanoparticles and their applications in biolabeling and fluorescent imaging of cancer cells, Nanoscale, 2, 1141–1148. [https://doi.org/10.1039/C0NR00102C](https://doi.org/10.1039/C0NR00102C)
  • Hu, S., Zhou, Y., Zhao, Y., Yang, X., Zhang, F., Gu, N., Ma, J., Reynolds, M. A., Xia, Y., & Xu, H.H.K., (2018). Enhanced bone regeneration and visual monitoring via superparamagnetic iron oxide nanoparticle scaffold in rats, Journal of Tissue Engineering and Regenerative Medicine, 12, e2085–e2098.  [https://doi.org/10.1002/term.2641](https://doi.org/10.1002/term.2641) 
  • Khashan, S., Dagher, S., Al Omari, S., Tit, N., Elnajjar, E., Mathew, B., & Hilal-Alnaqbi, A., (2017). Photo-thermal characteristics of water-based Fe3O4@SiO2 nanofluid for solar-thermal applications, Materials Research Express, 4, 055701.  [https://doi.org/10.1088/2053-1591/aa6c15](https://doi.org/10.1088/2053-1591/aa6c15)
  • Mortazavi-Derazkola, S., Salavati-Niasari, M., Khojasteh, H., Amiri, O., & Ghoreishi, S.M., (2017). Green synthesis of magnetic Fe3O4/SiO2/HAp nanocomposite for atenolol delivery and in vivo toxicity study, Journal of Cleaner Production, 168, 39–50.  [https://doi.org/10.1016/j.jclepro.2017.08.235](https://doi.org/10.1016/j.jclepro.2017.08.235)
  • Meng, J., Xiao, B., Zhang, Y., Liu, J., Xue, H., Lei, J., Kong, H., Huang, Y., Jin, Z., Gu, N., & Xu, H., (2013). Super-paramagnetic responsive nanofibrous scaffolds under static magnetic field enhance osteogenesis for bone repair in vivo, Scientific Reports, 3, 2655. [https://doi.org/10.1038/srep02655](https://doi.org/10.1038/srep02655)
  • Kandasamy G., & Maity, D., (2015). Recent advances in superparamagnetic iron oxide nanoparticles (SPIONs) for in vitro and in vivo cancer nanotheranostics, International Journal of Pharmaceutics, 496, 191–218. [https://doi.org/10.1016/j.ijpharm.2015.10.058](https://doi.org/10.1016/j.ijpharm.2015.10.058)
  • Unal, F., (2023). Production and characterization of magnetic-luminescent Fe3O4@ZnO:RE composite nanoparticles for biomedical application, Physica Status Solidi (A) Applications and Materials Science, 220(15), 2300149. [https://doi.org/10.1002/pssa.202300149](https://doi.org/10.1002/pssa.202300149)
  • Shiyong, Y., Renfei, Z., Jing, Z., Xuechuan, G., Zhao, L., Zhibing, & T., Haiquan S., (2016). Synthesis and characteristic of the NaYF4/Fe3O4@SiO2 @Tb(DBM)3.2H2O/SiO2 luminomagnetic microspheres with core–shell structure, Journal of Nanoscience and Nanotechnology, 16, 3791–3795. [https://doi.org/10.1166/jnn.2016.11858](https://doi.org/10.1166/jnn.2016.11858)
  • Li, X., Wen, Q., Chen, J., Sun, W., Zheng, Y., Long, C., & Wang Q., (2022). Lanthanide molecular species generated Fe3O4@SiO2-TbDPA nanosphere for the efficient determination of nitrite, Molecules, 27(14), 4431. [https://doi.org/10.3390/molecules27144431](https://doi.org/10.3390/molecules27144431)
  • Khan, L. U., Zambon, L.F.M., Santos, J., Rodrigues, R.V., Costa, L.S., Muraca, D., Pirota, K.R., Felinto, M.C.F.C., Malta, O.L., & Brito H.F., (2018). Red-emitting magnetic nanocomposites assembled from ag-decorated Fe3O4@SiO2 and Y2O3:Eu3+:Impact of iron-oxide/silver nanoparticles on Eu3+ emission, ChemistrySelect, 3, 1157–1167. [https://doi.org/10.1002/slct.201702478](https://doi.org/10.1002/slct.201702478)
  • Zhao, K., Sun, J., Wang, F., Song, A., Liu, K., & Zhang, H., (2020). Lanthanide-based photothermal materials: fabrication and biomedical applications, ACS Applied Bio Materials, 3(7), 3975–3986. [https://doi.org/10.1021/acsabm.0c00618](https://doi.org/10.1021/acsabm.0c00618)
  • Bakhmetyev, V.V., Minakova, T.S., Mjakin, S.V., Lebedev, L.A., Vlasenko, A.B., Nikandrova, A.A., Ekimova, I.A., Eremina, N.S., Sychov, M.M., & Ringuede A., (2016). Synthesis and surface characterization of nanosized Y2O3:Eu and YAG:Eu luminescent phosphors which are useful in photodynamic therapy of cancer, European Journal of Nanomedicine, 8(4), 173–184. [https://doi.org/10.1515/ejnm-2016-0020](https://doi.org/10.1515/ejnm-2016-0020)
  • Wieszczycka, K., Staszak, K., Woźniak-Budych, M.J., & Jurga, S., (2019). Lanthanides and tissue engineering strategies for bone regeneration, Coordination Chemistry Reviews, 388, 248–267. [https://doi.org/10.1016/j.ccr.2019.03.003](https://doi.org/10.1016/j.ccr.2019.03.003)
  • Bu, Y., Cui, B., Zhao, W., & Yang, Z., (2017). Preparation of multifunctional Fe3O4@ZnAl2O4:Eu3+@mSiO2-APTES drug-carrier for microwave controlled release of anticancer drugs, RSC Advances, 7, 55489–55495. [https://doi.org/10.1039/C7RA12004D](https://doi.org/10.1039/C7RA12004D)
  • Zhou, J., Sun, Y., Du, X., Xiong, L., Hu, H., & Li, F., (2010). Dual-modality in vivo imaging using rare-earth nanocrystals with near-infrared to near-infrared (NIR-to-NIR) upconversion luminescence and magnetic resonance properties, Biomaterials, 31, 3287–3295. [https://doi.org/10.1016/j.biomaterials.2010.01.040](https://doi.org/10.1016/j.biomaterials.2010.01.040)
  • Barta, C.A., Sachs-Barrable, K., Jia, J., Thompson, K.H., Wasan,K.M., & Orvig, C., (2007). Lanthanide containing compounds for therapeutic care in bone resorption disorders, Dalton Transactions, 5019–5030. [https://doi.org/10.1039/B705123A](https://doi.org/10.1039/B705123A)
  • Mawani, Y., Cawthray, J.F., Chang, S., Sachs-Barrable, K., Weekes, D.M., Wasan, K.M., & Orvig C., (2013). In vitro studies of lanthanide complexes for the treatment of osteoporosis, Dalton Transactions, 42, 5999–6011. [https://doi.org/10.1039/C2DT32373G](https://doi.org/10.1039/C2DT32373G)
  • Zhou, G., Gu, G., Li, Y., Zhang, Q., Wang, W., Wang, S., & Zhang Ji., (2013). Effects of cerium oxide nanoparticles on the proliferation, differentiation, and mineralization function of primary osteoblasts in vitro, Biological Trace Element Research, 153, 411–418. [https://doi.org/10.1007/s12011-013-9655-2](https://doi.org/10.1007/s12011-013-9655-2)
  • Sun, D.-H., Lu, P., Zhang, J.-L., Liu, Y.-L., & Ni, J.-Z., (2011). Synthesis of the Fe3O4@SiO2@SiO2–Tb(PABA)3 luminomagnetic microspheres, Journal of Nanoscience Nanotechnology, 11, 9774–9779. [https://doi.org/10.1166/jnn.2011.5265](https://doi.org/10.1166/jnn.2011.5265)
  • Fernandez-Ramos, M., Isasi, J., Alcolea, M., Munoz-Ortiz, T., & Ortiz-Rivero, E., (2022). New magnetic-fluorescent bifuntional (Y0.9Ln0.1VO4/Fe3O4)@SiO2 and [(Y0.9Ln0.1VO4@SiO2)/Fe3O4@SiO2] materials, Ceramics International, 48, 22006–22017. [https://doi.org/10.1016/j.ceramint.2022.04.191](https://doi.org/10.1016/j.ceramint.2022.04.191)
  • Cakmak, H., & Unal, F., (2020). Reinforcement of Na-alginate based ilms with carrot juice processing wastes, Hittite Journal of Science and Engineering, 7, 199 - 204. [https://doi.org/10.17350/HJSE19030000189](https://doi.org/10.17350/HJSE19030000189)
  • Salh, R., (2011). Crystalline silicon - properties and uses: Silicon nanocluster in silicon dioxide: cathodoluminescence, energy dispersive X-ray analysis and infrared spectroscopy studies Sukumar Basu (ed.), p. 173-218. Rijeka: InTech.
  • Glinka, Y. D., Lin, S. H., & Chen, Y. T., (1999). The photoluminescence from hydrogen-related species in composites of SiO2 nanoparticles, Applied Physics Letters, 75, 778–780. [https://doi.org/10.1063/1.124510](https://doi.org/10.1063/1.124510)
  • Flores Gracia, F., Aceves, M., Carrillo, J., Domínguez, C., & Falcony, C., (2005). Photoluminescence and cathodoluminescence characteristics of SiO2 and SRO films implanted with Si, Superficies y Vacío, 18, 7–13.
  • Unal, F. (2022). The effects of precursor concentration and morphology on photoluminescence behavior of Tb2O3 phosphors, Journal of the Chinese Chemical Society, 69, 332–338. https://doi.org/10.1002/jccs.202100480
  • Madkhali, O., Kaynar, Ü.H., Alajlani, Y., Coban, M.B., J. Guinea, G., Ayvacikli, M., Pierson, J.F., & Can N., (2023). Structural and temperature dependence luminescence characteristics of RE (RE=Eu3+, Dy3+, Sm3+ and Tb3+) in the new gadolinium aluminate borate phosphor, Ceramics International, 49, 19982–19995. https://doi.org/10.1016/j.ceramint.2023.03.120
  • Ntwaeaborwa, O.M., Swart, H.C., Kroon, R.E., Holloway, P.H., & Botha, J.R., (2006). Enhanced luminescence and degradation of SiO2:Ce,Tb powder phosphors prepared by a sol-gel process, Journal of Physics and Chemistry of Solids, 67(8), 1749–1753. https://doi.org/10.1016/j.jpcs.2006.04.002
  • Silva, A.J.S., Nascimento, T.D., Nascimento, P.A.M., Silveira, W.S., Carvalho, I. da S., Rezende, & M.V. do. S., (2021). Effect of dopant concentrations on the luminescent properties of LiAl5O8:Fe phosphors, Physica Status Solidi (B) – Basic Solid State Physics, 258, 2000584. https://doi.org/10.1002/pssb.202000584
  • Coban, M. B., (2023). A new 3D HoIII-organic framework constructed from 1,3,5-tris(4-carboxyphenyl)benzene and 1,10-phenanthroline: Crystal structure, morphological and solid state luminescence properties, Journal of Solid State Chemistry, 317, 123651. https://doi.org/10.1016/j.jssc.2022.123651
  • Roman-Lopez, J., Correcher, V., Garcia-Guinea, J., Prado-Herrero, P., Rivera, T., & Lozano, I. B., (2014). Effect of the chemical impurities on the luminescence emission of natural apatites, Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 126, 142–147. https://doi.org/10.1016/j.saa.2014.01.128

Theranostik Uygulamaları İçin Ayarlanabilir Manyetik-Lüminesans Tb:SiO2@Fe3O4 Nanoparçacıkları

Year 2025, Volume: 9 Issue: 4, 313 - 319, 28.12.2025

Abstract

Manyetik-lüminesans Tb katkılı SiO2@Fe3O4 çekirdek/kabuk nanoparçacıkları iki aşamalı bir yöntemle sentezlenmiş ve biyomedikal uygulamalar açısından değerlendirilmiştir. Fotolüminesans (PL) analizleri, SiO2 matrisinden kaynaklanan geniş yayınımlar ile Tb3+ iyonlarına ait 543-621 nm aralığındaki belirgin tepe noktalarını (5D4–7Fj; j = 5, 4, 3 geçişleri) ortaya koymuştur. Artan Tb katkı oranı, PL şiddetinde ve kristalinitede belirgin bir artışa yol açmıştır. Titreşimli Örnek Manyetometresi (VSM) sonuçları, yüksek doygunluk manyetizasyon değerleri ile (1 mol.% Tb için 45.53 emu/g ve 3 mol.% Tb için 36.93 emu/g) süperparamanyetik davranışı doğrulamış olup, bu değerler önceki çalışmalarda bildirilenlerden daha yüksektir. Tb konsantrasyonu ile manyetizasyon arasındaki ters ilişki, 3d-4f orbital etkileşimleri ve artan manyeto-kristal anizotropi ile açıklanmaktadır. Yüksek manyetik tepki ve optik izlenebilirliği bir arada sunan bu çok işlevli nanoparçacıklar, non-invaziv, görüntüleme destekli tedavilerde kullanım için güçlü bir potansiyel sunmakta olup, çok işlevli nanomedikal alanında önemli bir ilerleme kaydetmektedir.

References

  • Khan, L.U., Muraca, D., Brito, H.F., Moscoso-Londono, O., Felinto, M.C.F.C., Pirota, K.R., Teotonio, E.E.S., & Malta, O.L. (2016). Optical and magnetic nanocomposites containing Fe3O4@SiO2 grafted with Eu3+ and Tb3+ complexes. Journal of Alloys and Compounds, 686, 453–466. [https://doi.org/10.1016/j.jallcom.2016.06.009](https://doi.org/10.1016/j.jallcom.2016.06.009)
  • Curcio, A., Silva, A.K.A., Cabana, S., Espinosa, A., Baptiste, B., Menguy, N., Wilhelm, C., & Abou-Hassan, A., (2019). Iron oxide nanoflowers@CuS hybrids for cancer tri-therapy: Interplay of photothermal therapy, magnetic hyperthermia and photodynamic therapy, Theranostics, 9(5), 1288–1302. [https://doi.org/10.7150/thno.30238](https://doi.org/10.7150/thno.30238)
  • Sabale, S., Jadhav, V., Mane-Gavade, S., & Yu, X.Y., (2019). Superparamagnetic CoFe2O4@Au with high specific absorption rate and intrinsic loss power for magnetic fluid hyperthermia applications, Acta Metallurgica Sinica (English Letters), 32, 719–725. [https://doi.org/10.1007/s40195-018-0830-5](https://doi.org/10.1007/s40195-018-0830-5)
  • Heikham F. D., & Thiyam, D. S., (2017). Fabrication of spherical magneto-luminescent hybrid MnFe2O4@YPO4:5Eu3+ nanoparticles for hyperthermia application, ChemistrySelect, 2(31), 10010–10019. [https://doi.org/10.1002/slct.201701619](https://doi.org/10.1002/slct.201701619)
  • Abu-Dief, A. M., Nassar, I. F., & Elsayed,- W. H., (2016). Magnetic NiFe2O4 nanoparticles: efficient, heterogeneous and reusable catalyst for synthesis of acetylferrocene chalcones and their anti-tumour activity, Applied Organometallic Chemistry, 30 (11), 917–923. [https://doi.org/10.1002/aoc.3521](https://doi.org/10.1002/aoc.3521)
  • Shrivastava, N., Shad, N. A., Sajid, M. M., Duong, A., & Sharma, S. K., (2020). Design of magnetic-luminescent nanoplatforms: applications in theranostics and drug delivery. Magnetic Nanoheterostructures, Springer 287–315. [https://doi.org/10.1007/978-3-030-39923-8_9](https://doi.org/10.1007/978-3-030-39923-8_9)
  • Mi, C., Zhang, J., Gao, H., Wu, X., Wang, M., Wu, Y., Di, Y., Xu, Z., Mao, C.,  & Xu S., (2010). Multifunctional nanocomposites of superparamagnetic (Fe3O4) and NIR-responsive rare earth-doped up-conversion fluorescent (NaYF4:Yb,Er) nanoparticles and their applications in biolabeling and fluorescent imaging of cancer cells, Nanoscale, 2, 1141–1148. [https://doi.org/10.1039/C0NR00102C](https://doi.org/10.1039/C0NR00102C)
  • Hu, S., Zhou, Y., Zhao, Y., Yang, X., Zhang, F., Gu, N., Ma, J., Reynolds, M. A., Xia, Y., & Xu, H.H.K., (2018). Enhanced bone regeneration and visual monitoring via superparamagnetic iron oxide nanoparticle scaffold in rats, Journal of Tissue Engineering and Regenerative Medicine, 12, e2085–e2098.  [https://doi.org/10.1002/term.2641](https://doi.org/10.1002/term.2641) 
  • Khashan, S., Dagher, S., Al Omari, S., Tit, N., Elnajjar, E., Mathew, B., & Hilal-Alnaqbi, A., (2017). Photo-thermal characteristics of water-based Fe3O4@SiO2 nanofluid for solar-thermal applications, Materials Research Express, 4, 055701.  [https://doi.org/10.1088/2053-1591/aa6c15](https://doi.org/10.1088/2053-1591/aa6c15)
  • Mortazavi-Derazkola, S., Salavati-Niasari, M., Khojasteh, H., Amiri, O., & Ghoreishi, S.M., (2017). Green synthesis of magnetic Fe3O4/SiO2/HAp nanocomposite for atenolol delivery and in vivo toxicity study, Journal of Cleaner Production, 168, 39–50.  [https://doi.org/10.1016/j.jclepro.2017.08.235](https://doi.org/10.1016/j.jclepro.2017.08.235)
  • Meng, J., Xiao, B., Zhang, Y., Liu, J., Xue, H., Lei, J., Kong, H., Huang, Y., Jin, Z., Gu, N., & Xu, H., (2013). Super-paramagnetic responsive nanofibrous scaffolds under static magnetic field enhance osteogenesis for bone repair in vivo, Scientific Reports, 3, 2655. [https://doi.org/10.1038/srep02655](https://doi.org/10.1038/srep02655)
  • Kandasamy G., & Maity, D., (2015). Recent advances in superparamagnetic iron oxide nanoparticles (SPIONs) for in vitro and in vivo cancer nanotheranostics, International Journal of Pharmaceutics, 496, 191–218. [https://doi.org/10.1016/j.ijpharm.2015.10.058](https://doi.org/10.1016/j.ijpharm.2015.10.058)
  • Unal, F., (2023). Production and characterization of magnetic-luminescent Fe3O4@ZnO:RE composite nanoparticles for biomedical application, Physica Status Solidi (A) Applications and Materials Science, 220(15), 2300149. [https://doi.org/10.1002/pssa.202300149](https://doi.org/10.1002/pssa.202300149)
  • Shiyong, Y., Renfei, Z., Jing, Z., Xuechuan, G., Zhao, L., Zhibing, & T., Haiquan S., (2016). Synthesis and characteristic of the NaYF4/Fe3O4@SiO2 @Tb(DBM)3.2H2O/SiO2 luminomagnetic microspheres with core–shell structure, Journal of Nanoscience and Nanotechnology, 16, 3791–3795. [https://doi.org/10.1166/jnn.2016.11858](https://doi.org/10.1166/jnn.2016.11858)
  • Li, X., Wen, Q., Chen, J., Sun, W., Zheng, Y., Long, C., & Wang Q., (2022). Lanthanide molecular species generated Fe3O4@SiO2-TbDPA nanosphere for the efficient determination of nitrite, Molecules, 27(14), 4431. [https://doi.org/10.3390/molecules27144431](https://doi.org/10.3390/molecules27144431)
  • Khan, L. U., Zambon, L.F.M., Santos, J., Rodrigues, R.V., Costa, L.S., Muraca, D., Pirota, K.R., Felinto, M.C.F.C., Malta, O.L., & Brito H.F., (2018). Red-emitting magnetic nanocomposites assembled from ag-decorated Fe3O4@SiO2 and Y2O3:Eu3+:Impact of iron-oxide/silver nanoparticles on Eu3+ emission, ChemistrySelect, 3, 1157–1167. [https://doi.org/10.1002/slct.201702478](https://doi.org/10.1002/slct.201702478)
  • Zhao, K., Sun, J., Wang, F., Song, A., Liu, K., & Zhang, H., (2020). Lanthanide-based photothermal materials: fabrication and biomedical applications, ACS Applied Bio Materials, 3(7), 3975–3986. [https://doi.org/10.1021/acsabm.0c00618](https://doi.org/10.1021/acsabm.0c00618)
  • Bakhmetyev, V.V., Minakova, T.S., Mjakin, S.V., Lebedev, L.A., Vlasenko, A.B., Nikandrova, A.A., Ekimova, I.A., Eremina, N.S., Sychov, M.M., & Ringuede A., (2016). Synthesis and surface characterization of nanosized Y2O3:Eu and YAG:Eu luminescent phosphors which are useful in photodynamic therapy of cancer, European Journal of Nanomedicine, 8(4), 173–184. [https://doi.org/10.1515/ejnm-2016-0020](https://doi.org/10.1515/ejnm-2016-0020)
  • Wieszczycka, K., Staszak, K., Woźniak-Budych, M.J., & Jurga, S., (2019). Lanthanides and tissue engineering strategies for bone regeneration, Coordination Chemistry Reviews, 388, 248–267. [https://doi.org/10.1016/j.ccr.2019.03.003](https://doi.org/10.1016/j.ccr.2019.03.003)
  • Bu, Y., Cui, B., Zhao, W., & Yang, Z., (2017). Preparation of multifunctional Fe3O4@ZnAl2O4:Eu3+@mSiO2-APTES drug-carrier for microwave controlled release of anticancer drugs, RSC Advances, 7, 55489–55495. [https://doi.org/10.1039/C7RA12004D](https://doi.org/10.1039/C7RA12004D)
  • Zhou, J., Sun, Y., Du, X., Xiong, L., Hu, H., & Li, F., (2010). Dual-modality in vivo imaging using rare-earth nanocrystals with near-infrared to near-infrared (NIR-to-NIR) upconversion luminescence and magnetic resonance properties, Biomaterials, 31, 3287–3295. [https://doi.org/10.1016/j.biomaterials.2010.01.040](https://doi.org/10.1016/j.biomaterials.2010.01.040)
  • Barta, C.A., Sachs-Barrable, K., Jia, J., Thompson, K.H., Wasan,K.M., & Orvig, C., (2007). Lanthanide containing compounds for therapeutic care in bone resorption disorders, Dalton Transactions, 5019–5030. [https://doi.org/10.1039/B705123A](https://doi.org/10.1039/B705123A)
  • Mawani, Y., Cawthray, J.F., Chang, S., Sachs-Barrable, K., Weekes, D.M., Wasan, K.M., & Orvig C., (2013). In vitro studies of lanthanide complexes for the treatment of osteoporosis, Dalton Transactions, 42, 5999–6011. [https://doi.org/10.1039/C2DT32373G](https://doi.org/10.1039/C2DT32373G)
  • Zhou, G., Gu, G., Li, Y., Zhang, Q., Wang, W., Wang, S., & Zhang Ji., (2013). Effects of cerium oxide nanoparticles on the proliferation, differentiation, and mineralization function of primary osteoblasts in vitro, Biological Trace Element Research, 153, 411–418. [https://doi.org/10.1007/s12011-013-9655-2](https://doi.org/10.1007/s12011-013-9655-2)
  • Sun, D.-H., Lu, P., Zhang, J.-L., Liu, Y.-L., & Ni, J.-Z., (2011). Synthesis of the Fe3O4@SiO2@SiO2–Tb(PABA)3 luminomagnetic microspheres, Journal of Nanoscience Nanotechnology, 11, 9774–9779. [https://doi.org/10.1166/jnn.2011.5265](https://doi.org/10.1166/jnn.2011.5265)
  • Fernandez-Ramos, M., Isasi, J., Alcolea, M., Munoz-Ortiz, T., & Ortiz-Rivero, E., (2022). New magnetic-fluorescent bifuntional (Y0.9Ln0.1VO4/Fe3O4)@SiO2 and [(Y0.9Ln0.1VO4@SiO2)/Fe3O4@SiO2] materials, Ceramics International, 48, 22006–22017. [https://doi.org/10.1016/j.ceramint.2022.04.191](https://doi.org/10.1016/j.ceramint.2022.04.191)
  • Cakmak, H., & Unal, F., (2020). Reinforcement of Na-alginate based ilms with carrot juice processing wastes, Hittite Journal of Science and Engineering, 7, 199 - 204. [https://doi.org/10.17350/HJSE19030000189](https://doi.org/10.17350/HJSE19030000189)
  • Salh, R., (2011). Crystalline silicon - properties and uses: Silicon nanocluster in silicon dioxide: cathodoluminescence, energy dispersive X-ray analysis and infrared spectroscopy studies Sukumar Basu (ed.), p. 173-218. Rijeka: InTech.
  • Glinka, Y. D., Lin, S. H., & Chen, Y. T., (1999). The photoluminescence from hydrogen-related species in composites of SiO2 nanoparticles, Applied Physics Letters, 75, 778–780. [https://doi.org/10.1063/1.124510](https://doi.org/10.1063/1.124510)
  • Flores Gracia, F., Aceves, M., Carrillo, J., Domínguez, C., & Falcony, C., (2005). Photoluminescence and cathodoluminescence characteristics of SiO2 and SRO films implanted with Si, Superficies y Vacío, 18, 7–13.
  • Unal, F. (2022). The effects of precursor concentration and morphology on photoluminescence behavior of Tb2O3 phosphors, Journal of the Chinese Chemical Society, 69, 332–338. https://doi.org/10.1002/jccs.202100480
  • Madkhali, O., Kaynar, Ü.H., Alajlani, Y., Coban, M.B., J. Guinea, G., Ayvacikli, M., Pierson, J.F., & Can N., (2023). Structural and temperature dependence luminescence characteristics of RE (RE=Eu3+, Dy3+, Sm3+ and Tb3+) in the new gadolinium aluminate borate phosphor, Ceramics International, 49, 19982–19995. https://doi.org/10.1016/j.ceramint.2023.03.120
  • Ntwaeaborwa, O.M., Swart, H.C., Kroon, R.E., Holloway, P.H., & Botha, J.R., (2006). Enhanced luminescence and degradation of SiO2:Ce,Tb powder phosphors prepared by a sol-gel process, Journal of Physics and Chemistry of Solids, 67(8), 1749–1753. https://doi.org/10.1016/j.jpcs.2006.04.002
  • Silva, A.J.S., Nascimento, T.D., Nascimento, P.A.M., Silveira, W.S., Carvalho, I. da S., Rezende, & M.V. do. S., (2021). Effect of dopant concentrations on the luminescent properties of LiAl5O8:Fe phosphors, Physica Status Solidi (B) – Basic Solid State Physics, 258, 2000584. https://doi.org/10.1002/pssb.202000584
  • Coban, M. B., (2023). A new 3D HoIII-organic framework constructed from 1,3,5-tris(4-carboxyphenyl)benzene and 1,10-phenanthroline: Crystal structure, morphological and solid state luminescence properties, Journal of Solid State Chemistry, 317, 123651. https://doi.org/10.1016/j.jssc.2022.123651
  • Roman-Lopez, J., Correcher, V., Garcia-Guinea, J., Prado-Herrero, P., Rivera, T., & Lozano, I. B., (2014). Effect of the chemical impurities on the luminescence emission of natural apatites, Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 126, 142–147. https://doi.org/10.1016/j.saa.2014.01.128
There are 36 citations in total.

Details

Primary Language English
Subjects Biomedical Imaging, Biomaterials in Biomedical Engineering
Journal Section Research Article
Authors

Fatma Ünal 0000-0003-4476-2544

Mehmet Fatih Akyel 0000-0000-0000-0000

Submission Date November 20, 2025
Acceptance Date December 16, 2025
Publication Date December 28, 2025
Published in Issue Year 2025 Volume: 9 Issue: 4

Cite

APA Ünal, F., & Akyel, M. F. (2025). Tunable magnetic-luminescent Tb:SiO2@Fe3O4 nanoparticles for theranostic applications. European Mechanical Science, 9(4), 313-319. https://doi.org/10.26701/ems.1826882

Dergi TR Dizin'de Taranmaktadır.

Flag Counter