Research Article
BibTex RIS Cite

Year 2025, Volume: 9 Issue: 4, 328 - 334, 28.12.2025
https://doi.org/10.26701/ems.1837369

Abstract

References

  • [1] Ghadim, H.B., Godin, A., Veillere, A., Duquesne, M., Haillot, D., (2025). Review of thermal management of electronics and phase change materials. Renewable and Sustainable Energy Reviews. 208: 115039. doi: https://doi.org/10.1016/j.rser.2024.115039.
  • [2] Hunter, L.Y., (2025). Artificial Intelligence, Data Centers, Energy Capabilities, and International Security: An Exploratory Analysis. Armed Forces & Society. 0(0): 0095327X241308839. doi: 10.1177/0095327X241308839.
  • [3] Samal, S.K., Chang, H.-C., Fulpagare, Y., Wang, C.-C., (2025). Thermal management of data centers: Chip-scale cooling using novel distributed inlet–outlet jet impingement liquid cold plate. Applied Thermal Engineering. 271: 126360. doi: https://doi.org/10.1016/j.applthermaleng.2025.126360.
  • [4] Li, Z., Luo, H., Jiang, Y., Liu, H., Xu, L., Cao, K., et al., (2024). Comprehensive review and future prospects on chip-scale thermal management: Core of data center’s thermal management. Applied Thermal Engineering. 251: 123612. doi: https://doi.org/10.1016/j.applthermaleng.2024.123612.
  • [5] Ramakrishnan, B., Turner, C., Alissa, H., Trieu, D., Rivera, F., Melton, L., et al., (2025). Understanding the Impact of Data Center Liquid Cooling on Energy and Performance of Machine Learning and Artificial Intelligence Workloads. Journal of Electronic Packaging. 147(2). doi: 10.1115/1.4067136.
  • [6] Rasangika, A.H.D.K., Nasif, M.S., Al-Waked, R., (2023). Comparison of Forced Convective Heat-Transfer Enhancement of Conventional and Thin Plate-Fin Heat Sinks under Sinusoidal Vibration. Applied Sciences. 13(21). doi: 10.3390/app132111909.
  • [7] Ozbalci, O., Dogan, A., Asilturk, M., (2022). Heat Transfer Performance of Plate Fin and Pin Fin Heat Sinks Using Al2O3/H2O Nanofluid in Electronic Cooling. Processes. 10(8). doi: 10.3390/pr10081644.
  • [8] Bayrak, F.T., Toprak, B.İ., Solmaz, İ., Bayer, Ö., (2025). The influence of slotted solid cylindrical fin with aluminum foam insert on the thermal and hydraulic characteristics of air-cooled pin-fin heat sink. International Communications in Heat and Mass Transfer. 162: 108595. doi: https://doi.org/10.1016/j.icheatmasstransfer.2025.108595.
  • [9] Dixit, T., Nithiarasu, P., Kumar, S., (2021). Numerical evaluation of additively manufactured lattice architectures for heat sink applications. International Journal of Thermal Sciences. 159: 106607. doi: https://doi.org/10.1016/j.ijthermalsci.2020.106607.
  • [10] Batikh, A., Fradin, J.-P., Castro Moreno, A., (2025). Computational and Experimental Investigation of Additively Manufactured Lattice Heat Sinks for Liquid-Cooling Railway Power Electronics. Energies. 18(14). doi: 10.3390/en18143753.
  • [11] Ansari, D., Duwig, C., (2024). A gyroid TPMS heat sink for electronic cooling. Energy Conversion and Management. 319: 118918. doi: https://doi.org/10.1016/j.enconman.2024.118918.
  • [12] Chen, M., Shi, Y., Yang, L., Yan, C., Song, B., Liu, Y., et al., (2024). Thermal performances of Gyroid-fin heat sink for power chips. Case Studies in Thermal Engineering. 61: 105095. doi: https://doi.org/10.1016/j.csite.2024.105095.
  • [13] Saghir, M.Z., Yahya, M., Ortiz, P.D., Impellizzeri, S., Al-Ketan, O., (2025). Heat Enhancement of Ethylene Glycol/Water Mixture in the Presence of Gyroid TPMS Structure: Experimental and Numerical Comparison. Processes. 13(1). doi: 10.3390/pr13010228.
  • [14] Shen, J., Zhang, Q., Wang, Z., (2024). Conjugate study on heat transfer enhancement of a TPMS-based hybrid heat sink design. Applied Thermal Engineering. 257: 124350. doi: https://doi.org/10.1016/j.applthermaleng.2024.124350.
  • [15] Chen, M., Shi, Y., Yang, L., Yan, C., Su, B., Fu, H., et al., (2025). Performance evaluation for additively manufactured heat sinks based on Gyroid-TPMS. Thermal Science and Engineering Progress. 60: 103499. doi: https://doi.org/10.1016/j.tsep.2025.103499.
  • [16] Al-Ketan, O., Abu Al-Rub, R.K., (2021). MSLattice: A free software for generating uniform and graded lattices based on triply periodic minimal surfaces. Material Design & Processing Communications. 3(6): e205. doi: https://doi.org/10.1002/mdp2.205.
  • [17] Amara, K., Saghir, M.Z., Abdeljabar, R., (2025). Review of Triply Periodic Minimal Surface (TPMS) Structures for Cooling Heat Sinks. Energies. 18(18). doi: 10.3390/en18184920.
  • [18] Gado, M.G., (2025). Thermal management and heat transfer enhancement of electronic devices using integrative phase change material (PCM) and triply periodic minimal surface (TPMS) heat sinks. Applied Thermal Engineering. 258: 124504. doi: https://doi.org/10.1016/j.applthermaleng.2024.124504.
  • [19] Chouhan, G., Namdeo, A.K., Guner, A., Essa, K., Bidare, P., (2025). Heat transfer performance of compact TPMS lattice heat sinks via metal additive manufacturing. Progress in Additive Manufacturing. doi: 10.1007/s40964-025-01366-0.

Investigation of lattice geometry effects on the steady-state thermal performance of aluminum alloy CPU coolers via finite element analysis

Year 2025, Volume: 9 Issue: 4, 328 - 334, 28.12.2025
https://doi.org/10.26701/ems.1837369

Abstract

This study numerically investigates the effect of lattice geometry on the steady-state thermal performance of aluminum alloy CPU coolers using finite element analysis. Four heat sink (cooler) configurations with the same external dimensions and base thickness were considered. In addition to a reference heat sink with a conventional design, three lattice-based designs were developed as simple cubic (SC), body-centered cubic (BCC), and face-centered cubic (FCC) unit cell. All coolers were subjected to a constant temperature of 95 °C from the surface of base, while natural convection was modeled on the external surfaces in 28 °C ambient air. A film coefficient of 5.0x10-6 W/mm2 °C was used for the reference and SC coolers, while a higher coefficient of 1.0x10-5 W/mm2 °C was applied to the BCC and FCC coolers to represent improved convective cooling. The results show that all lattice geometries reduced both the minimum and volume-averaged temperatures compared to the solid reference heat sink. The volume average temperature decreased from 94.358 °C to 93.415 °C for the SC cooler, and to 91.804 °C and 91.446 °C for the FCC and BCC coolers, respectively. Line temperature analysis along the cooler height revealed that the BCC lattice produced the lowest path-averaged temperature, followed by FCC and SC designs. This suggests that in lattice-based coolers, the lattice design and heatsink topology can be as important as the total surface area.

Ethical Statement

Not applicable

Supporting Institution

None declared

Thanks

None declared

References

  • [1] Ghadim, H.B., Godin, A., Veillere, A., Duquesne, M., Haillot, D., (2025). Review of thermal management of electronics and phase change materials. Renewable and Sustainable Energy Reviews. 208: 115039. doi: https://doi.org/10.1016/j.rser.2024.115039.
  • [2] Hunter, L.Y., (2025). Artificial Intelligence, Data Centers, Energy Capabilities, and International Security: An Exploratory Analysis. Armed Forces & Society. 0(0): 0095327X241308839. doi: 10.1177/0095327X241308839.
  • [3] Samal, S.K., Chang, H.-C., Fulpagare, Y., Wang, C.-C., (2025). Thermal management of data centers: Chip-scale cooling using novel distributed inlet–outlet jet impingement liquid cold plate. Applied Thermal Engineering. 271: 126360. doi: https://doi.org/10.1016/j.applthermaleng.2025.126360.
  • [4] Li, Z., Luo, H., Jiang, Y., Liu, H., Xu, L., Cao, K., et al., (2024). Comprehensive review and future prospects on chip-scale thermal management: Core of data center’s thermal management. Applied Thermal Engineering. 251: 123612. doi: https://doi.org/10.1016/j.applthermaleng.2024.123612.
  • [5] Ramakrishnan, B., Turner, C., Alissa, H., Trieu, D., Rivera, F., Melton, L., et al., (2025). Understanding the Impact of Data Center Liquid Cooling on Energy and Performance of Machine Learning and Artificial Intelligence Workloads. Journal of Electronic Packaging. 147(2). doi: 10.1115/1.4067136.
  • [6] Rasangika, A.H.D.K., Nasif, M.S., Al-Waked, R., (2023). Comparison of Forced Convective Heat-Transfer Enhancement of Conventional and Thin Plate-Fin Heat Sinks under Sinusoidal Vibration. Applied Sciences. 13(21). doi: 10.3390/app132111909.
  • [7] Ozbalci, O., Dogan, A., Asilturk, M., (2022). Heat Transfer Performance of Plate Fin and Pin Fin Heat Sinks Using Al2O3/H2O Nanofluid in Electronic Cooling. Processes. 10(8). doi: 10.3390/pr10081644.
  • [8] Bayrak, F.T., Toprak, B.İ., Solmaz, İ., Bayer, Ö., (2025). The influence of slotted solid cylindrical fin with aluminum foam insert on the thermal and hydraulic characteristics of air-cooled pin-fin heat sink. International Communications in Heat and Mass Transfer. 162: 108595. doi: https://doi.org/10.1016/j.icheatmasstransfer.2025.108595.
  • [9] Dixit, T., Nithiarasu, P., Kumar, S., (2021). Numerical evaluation of additively manufactured lattice architectures for heat sink applications. International Journal of Thermal Sciences. 159: 106607. doi: https://doi.org/10.1016/j.ijthermalsci.2020.106607.
  • [10] Batikh, A., Fradin, J.-P., Castro Moreno, A., (2025). Computational and Experimental Investigation of Additively Manufactured Lattice Heat Sinks for Liquid-Cooling Railway Power Electronics. Energies. 18(14). doi: 10.3390/en18143753.
  • [11] Ansari, D., Duwig, C., (2024). A gyroid TPMS heat sink for electronic cooling. Energy Conversion and Management. 319: 118918. doi: https://doi.org/10.1016/j.enconman.2024.118918.
  • [12] Chen, M., Shi, Y., Yang, L., Yan, C., Song, B., Liu, Y., et al., (2024). Thermal performances of Gyroid-fin heat sink for power chips. Case Studies in Thermal Engineering. 61: 105095. doi: https://doi.org/10.1016/j.csite.2024.105095.
  • [13] Saghir, M.Z., Yahya, M., Ortiz, P.D., Impellizzeri, S., Al-Ketan, O., (2025). Heat Enhancement of Ethylene Glycol/Water Mixture in the Presence of Gyroid TPMS Structure: Experimental and Numerical Comparison. Processes. 13(1). doi: 10.3390/pr13010228.
  • [14] Shen, J., Zhang, Q., Wang, Z., (2024). Conjugate study on heat transfer enhancement of a TPMS-based hybrid heat sink design. Applied Thermal Engineering. 257: 124350. doi: https://doi.org/10.1016/j.applthermaleng.2024.124350.
  • [15] Chen, M., Shi, Y., Yang, L., Yan, C., Su, B., Fu, H., et al., (2025). Performance evaluation for additively manufactured heat sinks based on Gyroid-TPMS. Thermal Science and Engineering Progress. 60: 103499. doi: https://doi.org/10.1016/j.tsep.2025.103499.
  • [16] Al-Ketan, O., Abu Al-Rub, R.K., (2021). MSLattice: A free software for generating uniform and graded lattices based on triply periodic minimal surfaces. Material Design & Processing Communications. 3(6): e205. doi: https://doi.org/10.1002/mdp2.205.
  • [17] Amara, K., Saghir, M.Z., Abdeljabar, R., (2025). Review of Triply Periodic Minimal Surface (TPMS) Structures for Cooling Heat Sinks. Energies. 18(18). doi: 10.3390/en18184920.
  • [18] Gado, M.G., (2025). Thermal management and heat transfer enhancement of electronic devices using integrative phase change material (PCM) and triply periodic minimal surface (TPMS) heat sinks. Applied Thermal Engineering. 258: 124504. doi: https://doi.org/10.1016/j.applthermaleng.2024.124504.
  • [19] Chouhan, G., Namdeo, A.K., Guner, A., Essa, K., Bidare, P., (2025). Heat transfer performance of compact TPMS lattice heat sinks via metal additive manufacturing. Progress in Additive Manufacturing. doi: 10.1007/s40964-025-01366-0.
There are 19 citations in total.

Details

Primary Language English
Subjects Material Design and Behaviors
Journal Section Research Article
Authors

Mustafa Güven Gök 0000-0002-5959-0549

Submission Date December 6, 2025
Acceptance Date December 25, 2025
Publication Date December 28, 2025
Published in Issue Year 2025 Volume: 9 Issue: 4

Cite

APA Gök, M. G. (2025). Investigation of lattice geometry effects on the steady-state thermal performance of aluminum alloy CPU coolers via finite element analysis. European Mechanical Science, 9(4), 328-334. https://doi.org/10.26701/ems.1837369

Dergi TR Dizin'de Taranmaktadır.

Flag Counter