In the development of lighting technologies, light emitting diode (LED) technology plays an important role due to its high efficiency. LED lightening is the future of indoor and outdoor illumination solutions that all around of the world there is a widespread transition to save energy and have better quality illumination via LED-based solutions. On other hand, cooling of high power LED is crucial factor to utilize LED in high performance. In addition, finned heat sink could not be efficient based on the its geometry and usage areas due to the powder, the rain and the muds effects. In this study, an un-finned heat sink LED armature consisting of aluminum sheet metal was designed using a computer-aided-design (CAD) program. Furthermore, manufacturing of the heat sinks from sheet metal plates with bending machines enables to increase variety of LED armatures cheaply according to design requirements. Then, the thermal analysis of the system was conducted for the case of natural heat convection under different electrical powers and ambient temperatures by a commercial finite element analysis (FEA) program: SolidWorks Simulation. As a result of the thermal analysis, the ultimate heat sink sizes were obtained to minimize junction temperature of LED. Finally, the experimental studies were carried out to verify the feasibility of numerical solutions that they were in good agreement.
Primary Language | English |
---|---|
Subjects | Mechanical Engineering |
Journal Section | Research Article |
Authors | |
Publication Date | March 20, 2021 |
Acceptance Date | December 9, 2020 |
Published in Issue | Year 2021 |