Year 2021,
, 183 - 188, 20.12.2021
Büşra Karaoğlu
Ramazan Kaçar
,
Hayriye Ertek Emre
,
Samet Nohutçu
Project Number
FYL-2019-2021
References
- [1] Biro, E., Lee, A.(2004). Welded properties of various DP600 chemistries. Proc. Sheet Metal Welding Conference XI, Sterling Heights, Mich.
- [2] Kapustka, N., Conrardy, C., Babu, S., Albright, C. (2008) Effect of GMAW process and material conditions on DP 780 and TRIP 780 welds. Welding Journal, 87(6):135-148.
- [3] Yinghui, Z., Yonli, M., Yonglin, K., Hao Y. (2006) Mechanical properties and microstructure of TRIP steels produced using TSCR process. Journal of University of Science and Technology, 13(5):416-421, DOI: 10.1016/S1005-8850(06)60084-4.
- [4] Piccinia, J., Svobodaa, H. (2012) Effect of the plasma arc welding procedure on mechanical properties of DP700 steel. 11th International Congress on Metallurgy & Materials SAM/CONAME, Procedia Materials Science, p.50 – 57.
- [5] Wu, D., Zhuang, L., Hui-sheng, L. (2008) Effect of controlled cooling after hot rolling on mechanical properties of hot rolled TRIP steel. Journal of Iron and Steel Research International, 15 (2):65-70, DOI: 10.1016/S1006-706X(08)60034-5.
- [6] Nayaka, S.S., Baltazar Hernandeza, V.H., Okitaa, Y., Zhou, Y. (2012) Microstructure–hardness relationship in the fusion zone of TRIP steel welds. Materials Science and Engineering A, 551:73– 81, DOI: 10.1016/j.msea.2012.04.096.
- [7] Ding, H., Song, D., Tang, Z., Yang, P. (2011) Strain hardening behavior of a TRIP/TWIP steel with 18.8% Mn. Material Science and Engineering A, 528(3):868-873, DOI: 10.1016/j.msea.2010.10.040
- [8] Pal, T.K., Chattopadhyay, K. (2010) Resistance spot weldability and high cycle fatigue behavior of martensitic (M190) steel sheet. Fatigue and Fracture of Engineering Materials and Structures, 34(1):46-52, DOI: 10.1111/j.1460-2695.2010.01489.x
- [9] De Cooman, B.C. (2004) Structure-properties relationship in TRIP steels containing carbide-free bainite. Current Opinion in Solid State and Materials Science, 8(4):285-303, DOI: 10.1016/j.cossms.2004.10.002.
- [10] Hayat F., (2010) The investigation of the use of trip steels in automotive industry. J. Fac. Eng. Arch. Gazi Univ, 25(4):701-712.
- [11] Kaluç, E., Taban, E. (2004) Plazma arkı ile kaynak ve endüstriyel uygulamaları. Makine Tek., p.10-11.
- [12] Kou, S. (2003) Welding Metallurgy, J. Willey &Sons, New Jersey, p. 207-210.
- [13] Kučerová, L., Bystrianský, M. (2017) Comparison of thermo-mechanical treatment of C-Mn-Si-Nb and C-Mn-Si-Al-Nb TRIP steels. Procedia Engineering, 207:1856–1861, DOI: 10.1016/j.proeng.2017.10.951.
- [14] Huang, J.Y., Zhu, Y.T., Liao, X.Z., Beyerlein, I.J., Bourke, M.A., Mitchell, T.E. (2003) Microstructure of cryogenic treated M2 tool steel. Materials Science and Engineering A, 339(1):241-244, DOI:10.1016/S0921-5093(02)00165-X.
- [15] Yoo, S.W., Lee, C.S., Park, W.S., Kim, M.H., Lee,, J.M. (2011) Temperature and strain rate dependent constitutive model of TRIP steels for low-temperature applications. Computational Materials Science, 50(7):2014–2027, DOI: 10.1016/j.commatsci.2011.02.002.
- [16] Powell, G.W., Marshall, E.R., Backofen, W.A. (1958) Strain hardening of austenitic stainless steel. ASM Transactions Quarterly, 50:478–497.
- [17] Hecker, S.S., Stout, M.G., Staudhammer, K.P., Smith, J.L. (1982) Magnetic measurements and mechanical behavior. Metallurgical and Materials Transactions A 13(4): 619–626, DOI: 10.1007%2FBF02644427.
- [18] Wang, X.D., Huang, B.X., Rong, Y.H., Wang L. (2006) Microstructures and stability of retained austenite in TRIP steels. Materials Science and Engineering A, 438-440:300-305, DOI: 10.1016/j.msea.2006.02.149.
- [19] Kulin, S.A., Cohen, M., Averbach, B.L (1952). Effect of Applied stress on the martensitic transformation, Trans. AIME, 4:661-668, DOI:10.1007/BF03397742.
- [20] Nageswararao, P., Kaurwar, A., Singh, D., Jayaganthan, R., (2014) Enhancement in strength and ductility of Al-Mg-Si alloy by cryo-rolling followed by warm rolling. Procedia Engineering, 75:123–128, DOI: 10.1016/j.proeng.2013.11.027.
Investigation of the Influence of Cold-Treatment on Properties of Advanced High Strength Automotive Steels
Year 2021,
, 183 - 188, 20.12.2021
Büşra Karaoğlu
Ramazan Kaçar
,
Hayriye Ertek Emre
,
Samet Nohutçu
Abstract
Due to the moderate formability of low alloy high strength steels, (TRIP) steels called "transformation induced plasticity" have been developed. They are especially used in the production of automobile shock absorbers and the beam supporting parts. The microstructure of these steels consists of the distribution of ferrite, bainite and (5 - 10%) residual austenite phases in the matrix. The strength and formability of steels are generally provided by the residual austenite in the structure. During shaping, the residual austenite turns into martensite and gives high strength to the steel. Considering the literature studies, it is pointed out that there is a lack of information about the effect of cold treatment on TRIP steels. For this reason, in the study, TRIP800 steel has maintained cold treatment for two hours at various temperatures. Thus, the mechanical properties and microstructure changes of the samples were examined in detail.
Supporting Institution
Scientific Research Projects Unit of Karabük University
Project Number
FYL-2019-2021
Thanks
This study was supported by the Scientific Research Projects Unit of Karabük University with the project code number FYL-2019-2021. We would like to thank for their support.
References
- [1] Biro, E., Lee, A.(2004). Welded properties of various DP600 chemistries. Proc. Sheet Metal Welding Conference XI, Sterling Heights, Mich.
- [2] Kapustka, N., Conrardy, C., Babu, S., Albright, C. (2008) Effect of GMAW process and material conditions on DP 780 and TRIP 780 welds. Welding Journal, 87(6):135-148.
- [3] Yinghui, Z., Yonli, M., Yonglin, K., Hao Y. (2006) Mechanical properties and microstructure of TRIP steels produced using TSCR process. Journal of University of Science and Technology, 13(5):416-421, DOI: 10.1016/S1005-8850(06)60084-4.
- [4] Piccinia, J., Svobodaa, H. (2012) Effect of the plasma arc welding procedure on mechanical properties of DP700 steel. 11th International Congress on Metallurgy & Materials SAM/CONAME, Procedia Materials Science, p.50 – 57.
- [5] Wu, D., Zhuang, L., Hui-sheng, L. (2008) Effect of controlled cooling after hot rolling on mechanical properties of hot rolled TRIP steel. Journal of Iron and Steel Research International, 15 (2):65-70, DOI: 10.1016/S1006-706X(08)60034-5.
- [6] Nayaka, S.S., Baltazar Hernandeza, V.H., Okitaa, Y., Zhou, Y. (2012) Microstructure–hardness relationship in the fusion zone of TRIP steel welds. Materials Science and Engineering A, 551:73– 81, DOI: 10.1016/j.msea.2012.04.096.
- [7] Ding, H., Song, D., Tang, Z., Yang, P. (2011) Strain hardening behavior of a TRIP/TWIP steel with 18.8% Mn. Material Science and Engineering A, 528(3):868-873, DOI: 10.1016/j.msea.2010.10.040
- [8] Pal, T.K., Chattopadhyay, K. (2010) Resistance spot weldability and high cycle fatigue behavior of martensitic (M190) steel sheet. Fatigue and Fracture of Engineering Materials and Structures, 34(1):46-52, DOI: 10.1111/j.1460-2695.2010.01489.x
- [9] De Cooman, B.C. (2004) Structure-properties relationship in TRIP steels containing carbide-free bainite. Current Opinion in Solid State and Materials Science, 8(4):285-303, DOI: 10.1016/j.cossms.2004.10.002.
- [10] Hayat F., (2010) The investigation of the use of trip steels in automotive industry. J. Fac. Eng. Arch. Gazi Univ, 25(4):701-712.
- [11] Kaluç, E., Taban, E. (2004) Plazma arkı ile kaynak ve endüstriyel uygulamaları. Makine Tek., p.10-11.
- [12] Kou, S. (2003) Welding Metallurgy, J. Willey &Sons, New Jersey, p. 207-210.
- [13] Kučerová, L., Bystrianský, M. (2017) Comparison of thermo-mechanical treatment of C-Mn-Si-Nb and C-Mn-Si-Al-Nb TRIP steels. Procedia Engineering, 207:1856–1861, DOI: 10.1016/j.proeng.2017.10.951.
- [14] Huang, J.Y., Zhu, Y.T., Liao, X.Z., Beyerlein, I.J., Bourke, M.A., Mitchell, T.E. (2003) Microstructure of cryogenic treated M2 tool steel. Materials Science and Engineering A, 339(1):241-244, DOI:10.1016/S0921-5093(02)00165-X.
- [15] Yoo, S.W., Lee, C.S., Park, W.S., Kim, M.H., Lee,, J.M. (2011) Temperature and strain rate dependent constitutive model of TRIP steels for low-temperature applications. Computational Materials Science, 50(7):2014–2027, DOI: 10.1016/j.commatsci.2011.02.002.
- [16] Powell, G.W., Marshall, E.R., Backofen, W.A. (1958) Strain hardening of austenitic stainless steel. ASM Transactions Quarterly, 50:478–497.
- [17] Hecker, S.S., Stout, M.G., Staudhammer, K.P., Smith, J.L. (1982) Magnetic measurements and mechanical behavior. Metallurgical and Materials Transactions A 13(4): 619–626, DOI: 10.1007%2FBF02644427.
- [18] Wang, X.D., Huang, B.X., Rong, Y.H., Wang L. (2006) Microstructures and stability of retained austenite in TRIP steels. Materials Science and Engineering A, 438-440:300-305, DOI: 10.1016/j.msea.2006.02.149.
- [19] Kulin, S.A., Cohen, M., Averbach, B.L (1952). Effect of Applied stress on the martensitic transformation, Trans. AIME, 4:661-668, DOI:10.1007/BF03397742.
- [20] Nageswararao, P., Kaurwar, A., Singh, D., Jayaganthan, R., (2014) Enhancement in strength and ductility of Al-Mg-Si alloy by cryo-rolling followed by warm rolling. Procedia Engineering, 75:123–128, DOI: 10.1016/j.proeng.2013.11.027.