Year 2021,
, 189 - 193, 20.12.2021
Fatih Özen
,
Ufuk Dam
Muhammet Kaan Çobanoğlu
Erdinç İlhan
,
Salim Aslanlar
References
- Kong, Y.S., Abdullah, S., Schramm, D., Omar, M.Z., Haris, S.M., Bruckmann, T., (2017). Mission profiling of road data measurement for coil spring fatigue life. Measurement: Journal of the International Measurement Confederation. 107: 99–110. doi: 10.1016/j.measurement.2017.05.011.
- Zhang, P., Wang, D., Guo, Y., Cheng, P., Shao, C., Lang, N., et al., (2020). Fatigue failure analysis and finite element assessment of the twins torsion spring. Engineering Failure Analysis. 122(July 2020): 105187. doi: 10.1016/j.engfailanal.2020.105187.
- Mohammad Hashemi, Y., Kadkhodaei, M., Mohammadzadeh, M.R., (2019). Fatigue analysis of shape memory alloy helical springs. International Journal of Mechanical Sciences. 161–162(July). doi: 10.1016/j.ijmecsci.2019.105059.
- Drummen, I., Storhaug, G., Moan, T., (2008). Experimental and numerical investigation of fatigue damage due to wave-induced vibrations in a containership in head seas. Journal of Marine Science and Technology. 13(4): 428–45. doi: 10.1007/s00773-008-0006-5.
- Pyttel, B., Brunner, I., Kaiser, B., Berger, C., Mahendran, M., (2014). Fatigue behaviour of helical compression springs at a very high number of cycles - Investigation of various influences. International Journal of Fatigue. 60: 101–9. doi: 10.1016/j.ijfatigue.2013.01.003.
- Močilnik, V., Gubeljak, N., Predan, J., Flašker, J., (2010). The influence of constant axial compression pre-stress on the fatigue failure of torsion loaded tube springs. Engineering Fracture Mechanics. 77(16): 3132–42. doi: 10.1016/j.engfracmech.2010.07.014.
- Li, W., Sakai, T., Wakita, M., Mimura, S., (2014). Influence of microstructure and surface defect on very high cycle fatigue properties of clean spring steel. International Journal of Fatigue. 60: 48–56. doi: 10.1016/j.ijfatigue.2013.06.017.
- Bi, S., Li, Y., Zhao, H., (2019). Fatigue analysis and experiment of leaf-spring pivots for high precision flexural static balancing instruments. Precision Engineering. 55(October 2018): 408–16. doi: 10.1016/j.precisioneng.2018.10.009.
- Berger, C., Kaiser, B., (2006). Results of very high cycle fatigue tests on helical compression springs. International Journal of Fatigue. 28(11): 1658–63. doi: 10.1016/j.ijfatigue.2006.02.046.
- Akiniwa, Y., Stanzl-Tschegg, S., Mayer, H., Wakita, M., Tanaka, K., (2008). Fatigue strength of spring steel under axial and torsional loading in the very high cycle regime. International Journal of Fatigue. 30(12): 2057–63. doi: 10.1016/j.ijfatigue.2008.07.004.
Design and Manufacturing of a Pneumatic Driven Compression Spring Fatigue Machine
Year 2021,
, 189 - 193, 20.12.2021
Fatih Özen
,
Ufuk Dam
Muhammet Kaan Çobanoğlu
Erdinç İlhan
,
Salim Aslanlar
Abstract
Fatigue of the springs has not been studied widely in the industry. However, damage to the springs during operation can cause major irreversible damages. Since it affects the microstructural properties of the spring material to a high degree, fatigue analysis with various analysis methods cannot give a clear result. In this study, a multiple compression spring fatigue device simulating the real fatigue conditions was designed and produced. Machine design, production and control are also mentioned in detail. The electrical and solenoid operating system is also discussed.
References
- Kong, Y.S., Abdullah, S., Schramm, D., Omar, M.Z., Haris, S.M., Bruckmann, T., (2017). Mission profiling of road data measurement for coil spring fatigue life. Measurement: Journal of the International Measurement Confederation. 107: 99–110. doi: 10.1016/j.measurement.2017.05.011.
- Zhang, P., Wang, D., Guo, Y., Cheng, P., Shao, C., Lang, N., et al., (2020). Fatigue failure analysis and finite element assessment of the twins torsion spring. Engineering Failure Analysis. 122(July 2020): 105187. doi: 10.1016/j.engfailanal.2020.105187.
- Mohammad Hashemi, Y., Kadkhodaei, M., Mohammadzadeh, M.R., (2019). Fatigue analysis of shape memory alloy helical springs. International Journal of Mechanical Sciences. 161–162(July). doi: 10.1016/j.ijmecsci.2019.105059.
- Drummen, I., Storhaug, G., Moan, T., (2008). Experimental and numerical investigation of fatigue damage due to wave-induced vibrations in a containership in head seas. Journal of Marine Science and Technology. 13(4): 428–45. doi: 10.1007/s00773-008-0006-5.
- Pyttel, B., Brunner, I., Kaiser, B., Berger, C., Mahendran, M., (2014). Fatigue behaviour of helical compression springs at a very high number of cycles - Investigation of various influences. International Journal of Fatigue. 60: 101–9. doi: 10.1016/j.ijfatigue.2013.01.003.
- Močilnik, V., Gubeljak, N., Predan, J., Flašker, J., (2010). The influence of constant axial compression pre-stress on the fatigue failure of torsion loaded tube springs. Engineering Fracture Mechanics. 77(16): 3132–42. doi: 10.1016/j.engfracmech.2010.07.014.
- Li, W., Sakai, T., Wakita, M., Mimura, S., (2014). Influence of microstructure and surface defect on very high cycle fatigue properties of clean spring steel. International Journal of Fatigue. 60: 48–56. doi: 10.1016/j.ijfatigue.2013.06.017.
- Bi, S., Li, Y., Zhao, H., (2019). Fatigue analysis and experiment of leaf-spring pivots for high precision flexural static balancing instruments. Precision Engineering. 55(October 2018): 408–16. doi: 10.1016/j.precisioneng.2018.10.009.
- Berger, C., Kaiser, B., (2006). Results of very high cycle fatigue tests on helical compression springs. International Journal of Fatigue. 28(11): 1658–63. doi: 10.1016/j.ijfatigue.2006.02.046.
- Akiniwa, Y., Stanzl-Tschegg, S., Mayer, H., Wakita, M., Tanaka, K., (2008). Fatigue strength of spring steel under axial and torsional loading in the very high cycle regime. International Journal of Fatigue. 30(12): 2057–63. doi: 10.1016/j.ijfatigue.2008.07.004.