Research Article
BibTex RIS Cite

A Battery Powered on-Chip Peristaltic Pump for Lab-On-A-Chip Applications

Year 2021, , 201 - 205, 20.12.2021
https://doi.org/10.26701/ems.876597

Abstract

Low-cost and controllable fluid manipulation in small scale is important to biomedical research, and disease testing and diagnostics. In the midst of global disease outbreaks and pandemics such as Ebola and Covid-19, rapid and low-cost testing and diagnostics have become even more crucial. Lab-on-a-chip platforms are good candidates to be applied in these circumstances due their small footprints and lower-costs which enable rapid-prototyping of these devices. However, providing controlled fluid flow handling in small scale for on-chip devices is not currently suitable for point-of-care applications due to the expensive fluid pumping systems that currently used in most of the lab-on-a-chip devices. In this work, a low-cost and practical peristaltic pump is developed using 3D printing and open-sourced microcontroller platform Arduino boards. The entire system is designed to be portable and capable of producing metered fluid flow in small scale devices. The developed device is characterized to provide adjustable fluid flow control between 1.7 µL/s to 23 µL/s which is suitable for many on-chip applications. The peristaltic pump developed in this work can be used in lab-on-a-chip applications due to its simplicity and low-cost.

References

  • Franke, T.A., Wixforth, A., (2008). Microfluidics for miniaturized laboratories on a chip. Chemphyschem : A European Journal of Chemical Physics and Physical Chemistry. 9(15): 2140–56. doi: 10.1002/cphc.200800349.
  • Ozcelik, A., (2019). Atomic Layer Deposition (ALD) of Vanadium Oxide Thin Films. Turkish Journal of Electromechanics and Energy. 4(2): 13–8.
  • Kaynak, M., Ozcelik, A., Nama, N., Nourhani, A., Lammert, P.E.P.E., Crespi, V.H.V.H., et al., (2016). Acoustofluidic actuation of in situ fabricated microrotors. Lab Chip. 16(18): 3532–7. doi: 10.1039/C6LC00443A.
  • Yıldızhan, Ş., Çalık, A., Özcanlı, M., Serin, H., (2018). Bio-composite materials: a short review of recent trends, mechanical and chemical properties, and applications. European Mechanical Science. 2(3): 83–91. doi: 10.26701/ems.369005.
  • Serin, H., Yildizhan, S., Ozcanli, M., Akar, M.A., (2018). Micro hardness and water absorption properties of Cotton/Epoxy Bio-Composite. Journal of Biotechnology. 280: S91. doi: 10.1016/j.jbiotec.2018.06.299.
  • Ayan, B., Ozcelik, A., Bachman, H., Tang, S.-Y.S.-Y., Xie, Y., Wu, M., et al., (2016). Acoustofluidic coating of particles and cells. Lab Chip. 16(22): 4366–72. doi: 10.1039/C6LC00951D.
  • Zhang, P., Bachman, H., Ozcelik, A., Huang, T.J., (2020). Acoustic Microfluidics. Annual Review of Analytical Chemistry. 13(1): 17–43. doi: 10.1146/annurev-anchem-090919-102205.
  • Zhang, C., Xing, D., Li, Y., (2007). Micropumps, microvalves, and micromixers within PCR microfluidic chips: Advances and trends. Biotechnology Advances. 25(5): 483–514. doi: 10.1016/j.biotechadv.2007.05.003.
  • Akkoyun, F., Ozcelik, A., (2020). A Simple Approach for Controlling an Open-Source Syringe Pump. European Mechanical Science. 4(4): 166–70. doi: https://doi.org/10.26701/ems.769837.
  • Ozcelik, A., Aslan, Z., (2021). A practical microfluidic pump enabled by acoustofluidics and 3D printing. Microfluidics and Nanofluidics. doi: 10.1007/s10404-020-02411-w.
  • Walker, G.M., Beebe, D.J., (2002). A passive pumping method for microfluidic devices. Lab on a Chip. 2(3): 131–4. doi: 10.1039/b204381e.
  • Wu, Z., Cai, H., Ao, Z., Nunez, A., Liu, H., Bondesson, M., et al., (2019). A Digital Acoustofluidic Pump Powered by Localized Fluid-Substrate Interactions. Analytical Chemistry. 91(11): 7097–103. doi: 10.1021/acs.analchem.9b00069.
  • Au, A.K., Lai, H., Utela, B.R., Folch, A., (2011). Microvalves and Micropumps for BioMEMS. Micromachines. 2(2): 179–220. doi: 10.3390/mi2020179.
  • Chen, Z., Noh, S., Prisby, R.D., Lee, J.B., (2020). An implanted magnetic microfluidic pump for in vivo bone remodeling applications. Micromachines. 11(3): 1–10. doi: 10.3390/mi11030300.
  • Zhang, S., Wang, Y., Lavrijsen, R., Onck, P.R., den Toonder, J.M.J., (2018). Versatile microfluidic flow generated by moulded magnetic artificial cilia. Sensors and Actuators, B: Chemical. 263: 614–24. doi: 10.1016/j.snb.2018.01.189.
  • Studer, V., Pépin, A., Chen, Y., Ajdari, A., (2002). Fabrication of microfluidic devices for AC electrokinetic fluid pumping. Microelectronic Engineering. 61–62: 915–20. doi: 10.1016/S0167-9317(02)00518-X.
  • Maruo, S., Inoue, H., (2007). Optically driven viscous micropump using a rotating microdisk. Applied Physics Letters. 91(8): 1–4. doi: 10.1063/1.2768631.
  • Yang, Y.N., Hsiung, S.K., Lee, G. Bin., (2009). A pneumatic micropump incorporated with a normally closed valve capable of generating a high pumping rate and a high back pressure. Microfluidics and Nanofluidics. 6(6): 823–33. doi: 10.1007/s10404-008-0356-7.
Year 2021, , 201 - 205, 20.12.2021
https://doi.org/10.26701/ems.876597

Abstract

References

  • Franke, T.A., Wixforth, A., (2008). Microfluidics for miniaturized laboratories on a chip. Chemphyschem : A European Journal of Chemical Physics and Physical Chemistry. 9(15): 2140–56. doi: 10.1002/cphc.200800349.
  • Ozcelik, A., (2019). Atomic Layer Deposition (ALD) of Vanadium Oxide Thin Films. Turkish Journal of Electromechanics and Energy. 4(2): 13–8.
  • Kaynak, M., Ozcelik, A., Nama, N., Nourhani, A., Lammert, P.E.P.E., Crespi, V.H.V.H., et al., (2016). Acoustofluidic actuation of in situ fabricated microrotors. Lab Chip. 16(18): 3532–7. doi: 10.1039/C6LC00443A.
  • Yıldızhan, Ş., Çalık, A., Özcanlı, M., Serin, H., (2018). Bio-composite materials: a short review of recent trends, mechanical and chemical properties, and applications. European Mechanical Science. 2(3): 83–91. doi: 10.26701/ems.369005.
  • Serin, H., Yildizhan, S., Ozcanli, M., Akar, M.A., (2018). Micro hardness and water absorption properties of Cotton/Epoxy Bio-Composite. Journal of Biotechnology. 280: S91. doi: 10.1016/j.jbiotec.2018.06.299.
  • Ayan, B., Ozcelik, A., Bachman, H., Tang, S.-Y.S.-Y., Xie, Y., Wu, M., et al., (2016). Acoustofluidic coating of particles and cells. Lab Chip. 16(22): 4366–72. doi: 10.1039/C6LC00951D.
  • Zhang, P., Bachman, H., Ozcelik, A., Huang, T.J., (2020). Acoustic Microfluidics. Annual Review of Analytical Chemistry. 13(1): 17–43. doi: 10.1146/annurev-anchem-090919-102205.
  • Zhang, C., Xing, D., Li, Y., (2007). Micropumps, microvalves, and micromixers within PCR microfluidic chips: Advances and trends. Biotechnology Advances. 25(5): 483–514. doi: 10.1016/j.biotechadv.2007.05.003.
  • Akkoyun, F., Ozcelik, A., (2020). A Simple Approach for Controlling an Open-Source Syringe Pump. European Mechanical Science. 4(4): 166–70. doi: https://doi.org/10.26701/ems.769837.
  • Ozcelik, A., Aslan, Z., (2021). A practical microfluidic pump enabled by acoustofluidics and 3D printing. Microfluidics and Nanofluidics. doi: 10.1007/s10404-020-02411-w.
  • Walker, G.M., Beebe, D.J., (2002). A passive pumping method for microfluidic devices. Lab on a Chip. 2(3): 131–4. doi: 10.1039/b204381e.
  • Wu, Z., Cai, H., Ao, Z., Nunez, A., Liu, H., Bondesson, M., et al., (2019). A Digital Acoustofluidic Pump Powered by Localized Fluid-Substrate Interactions. Analytical Chemistry. 91(11): 7097–103. doi: 10.1021/acs.analchem.9b00069.
  • Au, A.K., Lai, H., Utela, B.R., Folch, A., (2011). Microvalves and Micropumps for BioMEMS. Micromachines. 2(2): 179–220. doi: 10.3390/mi2020179.
  • Chen, Z., Noh, S., Prisby, R.D., Lee, J.B., (2020). An implanted magnetic microfluidic pump for in vivo bone remodeling applications. Micromachines. 11(3): 1–10. doi: 10.3390/mi11030300.
  • Zhang, S., Wang, Y., Lavrijsen, R., Onck, P.R., den Toonder, J.M.J., (2018). Versatile microfluidic flow generated by moulded magnetic artificial cilia. Sensors and Actuators, B: Chemical. 263: 614–24. doi: 10.1016/j.snb.2018.01.189.
  • Studer, V., Pépin, A., Chen, Y., Ajdari, A., (2002). Fabrication of microfluidic devices for AC electrokinetic fluid pumping. Microelectronic Engineering. 61–62: 915–20. doi: 10.1016/S0167-9317(02)00518-X.
  • Maruo, S., Inoue, H., (2007). Optically driven viscous micropump using a rotating microdisk. Applied Physics Letters. 91(8): 1–4. doi: 10.1063/1.2768631.
  • Yang, Y.N., Hsiung, S.K., Lee, G. Bin., (2009). A pneumatic micropump incorporated with a normally closed valve capable of generating a high pumping rate and a high back pressure. Microfluidics and Nanofluidics. 6(6): 823–33. doi: 10.1007/s10404-008-0356-7.
There are 18 citations in total.

Details

Primary Language English
Subjects Mechanical Engineering
Journal Section Research Article
Authors

Sinan Güçlüer 0000-0001-7110-901X

Publication Date December 20, 2021
Acceptance Date March 31, 2021
Published in Issue Year 2021

Cite

APA Güçlüer, S. (2021). A Battery Powered on-Chip Peristaltic Pump for Lab-On-A-Chip Applications. European Mechanical Science, 5(4), 201-205. https://doi.org/10.26701/ems.876597

Dergi TR Dizin'de Taranmaktadır.

Flag Counter