Research Article
BibTex RIS Cite
Year 2019, Volume: 3 Issue: 2, 41 - 44, 20.06.2019

Abstract

References

  • Verdejo, R., Bernal, M. M., Romasanta, L. J., Lopez-Manchado, M. A. (2011). Graphene filled polymer nanocomposites. Journal of Materials Chemistry, 21(10): 3301-3310, DOI:10.1039/C0JM02708A.
  • Blaszczak, P., Brostow, W., Datashvili, T., Lobland, H. E. H. Rheology of low-density polyethylene-Boehmite composites, Polym. Compos, 31(2010): 1909-1913, DOI:10.1002/pc.20987.
  • Pinto, F., Carotenuto, G., Meo, M. (2015). Preparation and thermomechanical characterisation of graphene nanoplatelets/low-density polyethylene composites. Journal of Thermoplastic Composite Materials, 28(6): 745-761, DOI:10.1177/0892705713489702.
  • Supri, A., Salmah, H., Hazwan, K. (2008). Low density polyethylene-nanoclay composites: the effect of poly (acrylic acid) on mechanical properties, XRD, morphology properties and water absorption. Malaysian Polymer Journal, 3(2): 39-53.
  • Awad, S. A., Khalaf, E. M. (2019). Investigation of improvement of properties of polypropylene modified by nano silica composites. Composites Communications, 12: 59-63, DOI: 10.1016/j.coco.2018.12.008.
  • Youssef, A. M., El-Gendy, A., Kamel, S. (2015). Evaluation of corn husk fibers reinforced recycled low density polyethylene composites. Materials Chemistry and Physics, 152: 26-33, DOI: 10.1016/j.matchemphys.2014.12.004.
  • Awad, S. A., Khalaf, E. M. (2018). Characterisation and Performance of Low-Density Poly Ethylene-Corn Flour Composites. Aksaray University Journal of Science and Engineering, 2(2): 171-179, DOI: 10.29002/asujse.432715.
  • Sepet, H., Tarakcioglu, N., Misra R. (2016). Investigation of mechanical, thermal and surface properties of nanoclay/HDPE nanocomposites produced industrially by melt mixing approach. Journal of composite materials, 50: 3105-3116, DOI: 10.1177/0021998315615653.
  • Yang, W., Ge, L., Lv, H., Xia, M., Ji, X., & Yao, Z. (2016). Mechanical and thermal properties of low-density polyethylene composites filled with dye‐loaded shell powder. Journal of Applied Polymer Science, 133(42): DOI: 10.1002/app.44118.
  • Awad, S. A., Khalaf, E. M. (2018). Investigation of improvement of thermal and mechanical properties of polypropylene/nano clay composites. International Journal of Chemistry and Technology, 2(2): 129-134, DOI: 10.32571/ijct.430058.
  • Awad, S. A., Khalaf, E. M. Evaluation of thermal and mechanical properties of Low-Density Poly Ethylene (LDPE)-Corn Flour (CF) composites. International Journal of ChemTech Research, 10(3): 230-235.
  • Heydari-Meybodi, M., Saber-Samandari, S., Sadighi, M. (2015). A new approach for prediction of elastic modulus of polymer/nanoclay composites by considering interfacial debonding: experimental and numerical investigations. Composites Science and Technology, 117: 379-385, DOI: 10.1016/j.compscitech.2015.07.014.
  • Tanniru, M., Yuan, Q., Misra, R. (2006). On significant retention of impact strength in clay–reinforced high-density polyethylene (HDPE) nanocomposites. Polymer, 47: 2133-2146, DOI: 10.1016/j.polymer.2006.01.063.
  • Khan S.U., Iqbal, K., Munir, A., Kim, J-K. (2011). Quasi-static and impact fracture behaviours of CFRPs with nanoclay-filled epoxy matrix. Composites Part A: Applied Science and Manufacturing, 42: 253-264, DOI: 10.1016/j.compositesa.2010.11.011.
  • Faruk, O., Matuana, L.M. (2008). Nanoclay reinforced HDPE as a matrix for wood-plastic composites. Composites Science and Technology, 68: 2073-2077, DOI: 10.1016/j.compscitech.2008.03.004.
  • Lei, Y., Wu, Q., Clemons, C.M., Yao, F., Xu, Y. (2007). Influence of nanoclay on properties of HDPE/wood composites. Journal of Applied Polymer Science, 106: 3958-3966, DOI: 10.1002/app.27048.

An investigation of the improvements of mechanical and thermal properties of high-density polyethene/nano clay composites

Year 2019, Volume: 3 Issue: 2, 41 - 44, 20.06.2019

Abstract

The incorporation of different loadings of nanoclay (NC) into high-density polyethylene (HDPE) was studied. A series of different ratios of NC (2, 4, and 8 wt %) in fixed particle size, 300μm was blended with HDPE matrix and prepared via melt mixing process. The tests of thermal decomposition behaviour of HDPE and HDPE composites were investigated by utilising thermal gravimetric analysis (TGA). The mechanical properties of HDPE reinforced with different ratios of nanoclay particles were determined by tensile strength, Young’s modulus, and elongation at break. The results of the TGA indicated that the highest thermal stability was shown by the HDPE treated with 8 wt % of NC.  The tensile strength, Young’s modulus, and elongation at break were improved with increasing of NC loadings into HDPE matrix compared to that of HDPE without filler. The highest interfaces of nanoclay into the HDPE matrix were led to a decrease in the brittle behaviour and enhanced the high crosslinking of the HDPE matrix. The SEM micrographs showed that the HDPE/8 wt % more homogeneous and no voids on the surface by comparing to that of HDPE matrix. 

References

  • Verdejo, R., Bernal, M. M., Romasanta, L. J., Lopez-Manchado, M. A. (2011). Graphene filled polymer nanocomposites. Journal of Materials Chemistry, 21(10): 3301-3310, DOI:10.1039/C0JM02708A.
  • Blaszczak, P., Brostow, W., Datashvili, T., Lobland, H. E. H. Rheology of low-density polyethylene-Boehmite composites, Polym. Compos, 31(2010): 1909-1913, DOI:10.1002/pc.20987.
  • Pinto, F., Carotenuto, G., Meo, M. (2015). Preparation and thermomechanical characterisation of graphene nanoplatelets/low-density polyethylene composites. Journal of Thermoplastic Composite Materials, 28(6): 745-761, DOI:10.1177/0892705713489702.
  • Supri, A., Salmah, H., Hazwan, K. (2008). Low density polyethylene-nanoclay composites: the effect of poly (acrylic acid) on mechanical properties, XRD, morphology properties and water absorption. Malaysian Polymer Journal, 3(2): 39-53.
  • Awad, S. A., Khalaf, E. M. (2019). Investigation of improvement of properties of polypropylene modified by nano silica composites. Composites Communications, 12: 59-63, DOI: 10.1016/j.coco.2018.12.008.
  • Youssef, A. M., El-Gendy, A., Kamel, S. (2015). Evaluation of corn husk fibers reinforced recycled low density polyethylene composites. Materials Chemistry and Physics, 152: 26-33, DOI: 10.1016/j.matchemphys.2014.12.004.
  • Awad, S. A., Khalaf, E. M. (2018). Characterisation and Performance of Low-Density Poly Ethylene-Corn Flour Composites. Aksaray University Journal of Science and Engineering, 2(2): 171-179, DOI: 10.29002/asujse.432715.
  • Sepet, H., Tarakcioglu, N., Misra R. (2016). Investigation of mechanical, thermal and surface properties of nanoclay/HDPE nanocomposites produced industrially by melt mixing approach. Journal of composite materials, 50: 3105-3116, DOI: 10.1177/0021998315615653.
  • Yang, W., Ge, L., Lv, H., Xia, M., Ji, X., & Yao, Z. (2016). Mechanical and thermal properties of low-density polyethylene composites filled with dye‐loaded shell powder. Journal of Applied Polymer Science, 133(42): DOI: 10.1002/app.44118.
  • Awad, S. A., Khalaf, E. M. (2018). Investigation of improvement of thermal and mechanical properties of polypropylene/nano clay composites. International Journal of Chemistry and Technology, 2(2): 129-134, DOI: 10.32571/ijct.430058.
  • Awad, S. A., Khalaf, E. M. Evaluation of thermal and mechanical properties of Low-Density Poly Ethylene (LDPE)-Corn Flour (CF) composites. International Journal of ChemTech Research, 10(3): 230-235.
  • Heydari-Meybodi, M., Saber-Samandari, S., Sadighi, M. (2015). A new approach for prediction of elastic modulus of polymer/nanoclay composites by considering interfacial debonding: experimental and numerical investigations. Composites Science and Technology, 117: 379-385, DOI: 10.1016/j.compscitech.2015.07.014.
  • Tanniru, M., Yuan, Q., Misra, R. (2006). On significant retention of impact strength in clay–reinforced high-density polyethylene (HDPE) nanocomposites. Polymer, 47: 2133-2146, DOI: 10.1016/j.polymer.2006.01.063.
  • Khan S.U., Iqbal, K., Munir, A., Kim, J-K. (2011). Quasi-static and impact fracture behaviours of CFRPs with nanoclay-filled epoxy matrix. Composites Part A: Applied Science and Manufacturing, 42: 253-264, DOI: 10.1016/j.compositesa.2010.11.011.
  • Faruk, O., Matuana, L.M. (2008). Nanoclay reinforced HDPE as a matrix for wood-plastic composites. Composites Science and Technology, 68: 2073-2077, DOI: 10.1016/j.compscitech.2008.03.004.
  • Lei, Y., Wu, Q., Clemons, C.M., Yao, F., Xu, Y. (2007). Influence of nanoclay on properties of HDPE/wood composites. Journal of Applied Polymer Science, 106: 3958-3966, DOI: 10.1002/app.27048.
There are 16 citations in total.

Details

Primary Language English
Subjects Mechanical Engineering
Journal Section Research Article
Authors

Sameer Awad 0000-0002-9194-719X

Eman Khalaf This is me 0000-0001-7887-6158

Publication Date June 20, 2019
Acceptance Date May 17, 2019
Published in Issue Year 2019 Volume: 3 Issue: 2

Cite

APA Awad, S., & Khalaf, E. (2019). An investigation of the improvements of mechanical and thermal properties of high-density polyethene/nano clay composites. European Mechanical Science, 3(2), 41-44.

Dergi TR Dizin'de Taranmaktadır.

Flag Counter