Research Article
BibTex RIS Cite
Year 2020, Volume: 4 Issue: 2, 78 - 81, 20.06.2020
https://doi.org/10.26701/ems.532796

Abstract

References

  • [1] Sellers, T. (2000). Growing markets for engineered products spurs research. Wood Technology, 127 (3): 40–43.
  • [2] Tas, H. H., Sevincli, Y. (2015). Properties of particleboard produced from red pine (Pinus brutia) chips and lavender stems. BioResources, 10 (4): 7865-7876.
  • [3] Maloney, T. M. (1993). Modern particleboard and dry process fiberboard manufacturing. Miller Freeman Publ, San Francisco.
  • [4] Wang, D., Sun, X. S. (2002). Low density particleboard from wheat straw and corn pith. Industrial Crops and Products, 15 (1): 43-50, https://doi.org/10.1016/S0926-6690(01)00094-2.
  • [5] Kord, B., Roohani, M., Kord, B. (2015). Characterization and utilization of reed stem as alignocellulosic resource for particleboard production. Maderas. Ciencia y tecnología, 17 (3): 517-524, http://dx.doi.org/10.4067/S0718-221X2015005000046.
  • [6] Valarelli, I., Battistelle, R., Bueno, M., Bezerra, B., Campos, C., Alves, M. (2014). Physical and mechanical properties of particleboard bamboo waste bonded with urea formaldehyde and castor oil based adhesive. Revista Matéria, 19 (1): 1-6, http://dx.doi.org/10.1590/S1517-70762014000100002.
  • [7] Merrild, H., Christensen, T. H. (2009). Recycling of wood for particle board production: accounting of greenhouse gases and global warming contributions. Waste Management & Research, 27 (8): 781-788, DOI: 10.1177/0734242X09349418.
  • [8] Ganne-Chédeville, C., Diederichs, S. (2015). Potential environmental benefits of ultralight particleboards with biobased foam cores. International Journal of Polymer Science, Vol. 2015, 14 pages, http://dx.doi.org/10.1155/2015/383279.
  • [9] Németh, G. (2009). Handling and recycling of waste in wood industry, Ph.D. Thesis, University of West Hungary.
  • [10] Kamikawa, D., Kuroda, K., Inoue, M., Kubo, S., Yoshida, T. (2009). Evaluation of combustion properties of wood pellets using a cone calorimeter. Journal of Wood Science, 55 (6): 453–457, https://doi.org/10.1007/s10086-009-1061-1.
  • [11] Melo, R. R., Stangerlin, D. M., Santana, R. R. C., Pedrosa, T. D. (2014). Physical and mechanical properties of particleboard manufactured from wood, bamboo and rice husk. Materials Research, 17 (3): 682-686, http://dx.doi.org/10.1590/S1516-14392014005000052.
  • [12] Palo, M., Uusivuori, J. (2012). World forests, society and environment. Springer Science & Business Media.
  • [13] Skog, K., Ince, P., Dietzman, D., Ingram, C. (1995). Wood products technology trends. Changing the face of forestry. Journal of Forestry, 93 (12): 30-33.
  • [14] Tabarsa, T., Khanjanzadeh, H., Pirayesh, H. (2011). Key Engineering Materials, 471-472: 62-66, https://doi.org/10.4028/www.scientific.net/KEM.471-472.62.
  • [15] Antonovic, A., Jambrekovic, V., Kljak, J., Spanic, N., Medved, S. (2010). Influence of urea-formaldehyde resin modification with liquefied wood on particleboard properties. Drvna Industrija, 61 (1): 5-14, https://hrcak.srce.hr/49202.
  • [16] Oliveira, S. L., Mendes, R. F., Mendes, L. M., Freire, T. P. (2016). Particleboard panels made from sugarcane bagasse: characterization for use in the furniture industry. Materials Research, 19 (4): 914-922, http://dx.doi.org/10.1590/1980-5373-MR-2015-0211.
  • [17] Savov, V. (2014). Effect of temperature and duration of hot-pressing on main properties of light MDF. Woodworking industry and furniture manufacturing, 1: 34-39, Sofia. ISSN 1311-4972.
  • [18] Muruganandam, L., Ranjitha, J., Harshavardhan, A. (2016). A review report on physical and mechanical properties of particle boards from organic waste. International Journal of ChemTech Research, 9 (1): 64-72, ISSN: 0974-4290.
  • [19] Candan, Z., Akbulut, T. (2015). Physical and mechanical properties of nanoreinforced particleboards composites. Maderas Ciencia y Tecnología, 17 (2): 319 – 334, ISSN 0718-221X. http://dx.doi.org/10.4067/S0718-221X2015005000030.
  • [20] Batiancela, M. A., Acda, M. N., Cabangon, R. J. (2014). Particleboard from waste tea leaves and wood particles. Journal of Composite Materials, 48 (8): 911-916, https://doi.org/10.1177/0021998313480196.
  • [21] Taghiyari, H. R., Rangavar, H., Bibalan, O. F. (2011). Effect of nano-silver on reduction of hot pressing time and improvement in physical and mechanical properties of particleboard. BioResources, 6 (4): 4067-4075.
  • [22] BDS EN 323: 2001 “Wood-based panels - Determination of density”.
  • [23] BDS EN 326-1: 2001 “Wood-based panels - Sampling, cutting and inspection - Part 1: Sampling and cutting of test pieces and expression of test results”.
  • [24] BDS EN 317:1993 “Particleboards and fibreboards. Determination of swelling in thickness after immersion in water”.
  • [25] BDS EN 310:1999 “Wood-based panels - Determination of modulus of elasticity in bending and of bending strength”.

Influence Of Pressing Time On Physical And Mechanical Properties Of Particleboards Made From Scots Pine (Pinus sylvestris L.)

Year 2020, Volume: 4 Issue: 2, 78 - 81, 20.06.2020
https://doi.org/10.26701/ems.532796

Abstract




This study presents the results of
investigations on some physical and mechanical properties of one-layer
particleboards made from
Scots
pine
(Pinus sylvestris L.). The size and  the ratio of the using particles were: 0.5-1 mm- 20 %, 1-3 mm- 60 % and 3-5 mm-20 %, respectively. Urea-formaldehyde resin was used as a binder. The effect of
different pressing time-
15, 30, 60 and 90 s.mm-1 on the some properties, such as: density, moisture content, water
absorption, thickness
swelling and bending strength
according to appropriate standards was evaluated. The best results were observed
at pressing time of 60 and 90 s
.mm-1. The particleboards obtained under these
conditions can be used in the furniture industry
.




References

  • [1] Sellers, T. (2000). Growing markets for engineered products spurs research. Wood Technology, 127 (3): 40–43.
  • [2] Tas, H. H., Sevincli, Y. (2015). Properties of particleboard produced from red pine (Pinus brutia) chips and lavender stems. BioResources, 10 (4): 7865-7876.
  • [3] Maloney, T. M. (1993). Modern particleboard and dry process fiberboard manufacturing. Miller Freeman Publ, San Francisco.
  • [4] Wang, D., Sun, X. S. (2002). Low density particleboard from wheat straw and corn pith. Industrial Crops and Products, 15 (1): 43-50, https://doi.org/10.1016/S0926-6690(01)00094-2.
  • [5] Kord, B., Roohani, M., Kord, B. (2015). Characterization and utilization of reed stem as alignocellulosic resource for particleboard production. Maderas. Ciencia y tecnología, 17 (3): 517-524, http://dx.doi.org/10.4067/S0718-221X2015005000046.
  • [6] Valarelli, I., Battistelle, R., Bueno, M., Bezerra, B., Campos, C., Alves, M. (2014). Physical and mechanical properties of particleboard bamboo waste bonded with urea formaldehyde and castor oil based adhesive. Revista Matéria, 19 (1): 1-6, http://dx.doi.org/10.1590/S1517-70762014000100002.
  • [7] Merrild, H., Christensen, T. H. (2009). Recycling of wood for particle board production: accounting of greenhouse gases and global warming contributions. Waste Management & Research, 27 (8): 781-788, DOI: 10.1177/0734242X09349418.
  • [8] Ganne-Chédeville, C., Diederichs, S. (2015). Potential environmental benefits of ultralight particleboards with biobased foam cores. International Journal of Polymer Science, Vol. 2015, 14 pages, http://dx.doi.org/10.1155/2015/383279.
  • [9] Németh, G. (2009). Handling and recycling of waste in wood industry, Ph.D. Thesis, University of West Hungary.
  • [10] Kamikawa, D., Kuroda, K., Inoue, M., Kubo, S., Yoshida, T. (2009). Evaluation of combustion properties of wood pellets using a cone calorimeter. Journal of Wood Science, 55 (6): 453–457, https://doi.org/10.1007/s10086-009-1061-1.
  • [11] Melo, R. R., Stangerlin, D. M., Santana, R. R. C., Pedrosa, T. D. (2014). Physical and mechanical properties of particleboard manufactured from wood, bamboo and rice husk. Materials Research, 17 (3): 682-686, http://dx.doi.org/10.1590/S1516-14392014005000052.
  • [12] Palo, M., Uusivuori, J. (2012). World forests, society and environment. Springer Science & Business Media.
  • [13] Skog, K., Ince, P., Dietzman, D., Ingram, C. (1995). Wood products technology trends. Changing the face of forestry. Journal of Forestry, 93 (12): 30-33.
  • [14] Tabarsa, T., Khanjanzadeh, H., Pirayesh, H. (2011). Key Engineering Materials, 471-472: 62-66, https://doi.org/10.4028/www.scientific.net/KEM.471-472.62.
  • [15] Antonovic, A., Jambrekovic, V., Kljak, J., Spanic, N., Medved, S. (2010). Influence of urea-formaldehyde resin modification with liquefied wood on particleboard properties. Drvna Industrija, 61 (1): 5-14, https://hrcak.srce.hr/49202.
  • [16] Oliveira, S. L., Mendes, R. F., Mendes, L. M., Freire, T. P. (2016). Particleboard panels made from sugarcane bagasse: characterization for use in the furniture industry. Materials Research, 19 (4): 914-922, http://dx.doi.org/10.1590/1980-5373-MR-2015-0211.
  • [17] Savov, V. (2014). Effect of temperature and duration of hot-pressing on main properties of light MDF. Woodworking industry and furniture manufacturing, 1: 34-39, Sofia. ISSN 1311-4972.
  • [18] Muruganandam, L., Ranjitha, J., Harshavardhan, A. (2016). A review report on physical and mechanical properties of particle boards from organic waste. International Journal of ChemTech Research, 9 (1): 64-72, ISSN: 0974-4290.
  • [19] Candan, Z., Akbulut, T. (2015). Physical and mechanical properties of nanoreinforced particleboards composites. Maderas Ciencia y Tecnología, 17 (2): 319 – 334, ISSN 0718-221X. http://dx.doi.org/10.4067/S0718-221X2015005000030.
  • [20] Batiancela, M. A., Acda, M. N., Cabangon, R. J. (2014). Particleboard from waste tea leaves and wood particles. Journal of Composite Materials, 48 (8): 911-916, https://doi.org/10.1177/0021998313480196.
  • [21] Taghiyari, H. R., Rangavar, H., Bibalan, O. F. (2011). Effect of nano-silver on reduction of hot pressing time and improvement in physical and mechanical properties of particleboard. BioResources, 6 (4): 4067-4075.
  • [22] BDS EN 323: 2001 “Wood-based panels - Determination of density”.
  • [23] BDS EN 326-1: 2001 “Wood-based panels - Sampling, cutting and inspection - Part 1: Sampling and cutting of test pieces and expression of test results”.
  • [24] BDS EN 317:1993 “Particleboards and fibreboards. Determination of swelling in thickness after immersion in water”.
  • [25] BDS EN 310:1999 “Wood-based panels - Determination of modulus of elasticity in bending and of bending strength”.
There are 25 citations in total.

Details

Primary Language English
Journal Section Research Article
Authors

Miglena Valyova 0000-0003-4072-2537

Daniel Koynov This is me 0000-0002-8446-3736

Publication Date June 20, 2020
Acceptance Date March 17, 2020
Published in Issue Year 2020 Volume: 4 Issue: 2

Cite

APA Valyova, M., & Koynov, D. (2020). Influence Of Pressing Time On Physical And Mechanical Properties Of Particleboards Made From Scots Pine (Pinus sylvestris L.). European Mechanical Science, 4(2), 78-81. https://doi.org/10.26701/ems.532796

Dergi TR Dizin'de Taranmaktadır.

Flag Counter