Year 2022,
Volume: 6 Issue: 1, 27 - 31, 20.03.2022
Hamid Asadi Dereshgı
,
Kasım Serbest
,
Sema Nur Şahin
,
Büşra Balık
Supporting Institution
Sakarya Uygulamalı Bilimler Üniversitesi
Project Number
2021-01-04-055
References
- [1] Pandy, M. G., Barr, R. E. (2004). Biomechanics of the musculoskeletal system. Standard Handbook of Biomedical Engineering & Design. McGRAW-HILL.
- [2] Nordin, M., Frankel, V. H. (2001). Basic Biomechanics of the Musculoskeletal System. Lippincott Williams & Wilkins, USA.
- [3] Huxley, H. E. (1969). The mechanism of muscular contraction. Science, 164(3886): 1356-1366.
- [4] Huxley, A. F. (1974). Muscular contraction. The Journal of Physiology, 243(1): 1.
- [5] Hatze, H. (1981). Myocybernetic Control Models of Skeletal Muscle. Characteristics and Applications, University of South Africa.
- [6] Riek, S., Chapman, A. E., Milner, T. (1999). A simulation of muscle force and internal kinematics of extensor carpi radialis brevis during backhand tennis stroke: implications for injury. Clinical Biomechanics, 14(7): 477-483.
- [7] Stojanovic, B., Kojic, M., Rosic, M., Tsui, C. P., Tang, C. Y. (2007). An extension of Hill's three‐component model to include different fibre types in finite element modelling of muscle. International Journal for Numerical Methods in Engineering, 71(7): 801-817.
- [8] Tang, C. Y., Tsui, C. P., Stojanovic, B., Kojic, M. (2007). Finite element modelling of skeletal muscles coupled with fatigue. International Journal of Mechanical Sciences, 49(10): 1179-1191.
- [9] Siebert, T., Stutzig, N., Rode, C. (2018). A hill-type muscle model expansion accounting for effects of varying transverse muscle load. Journal of Biomechanics, 66: 57-62.
- [10] Wittek, A., Kajzer, J., Haug, E. (2000). Hill-type muscle model for analysis of mechanical effect of muscle tension on the human body response in a car collision using an explicit finite element code. JSME International Journal Series A Solid Mechanics and Material Engineering, 43(1): 8-18.
- [11] Audu, M. L., Davy, D. T. (1985). The influence of muscle model complexity in musculoskeletal motion modeling. Journal of Biomechanical Engineering, 107(2): 147-157.
- [12] Pandy, M. G., Zajac, F. E., Sim, E., Levine, W. S. (1990). An optimal control model for maximum-height human jumping. Journal of Biomechanics, 23(12): 1185-1198.
- [13] Giat, Y., Mizrahi, J., Levine, W. S., Chen, J. (1994). Simulation of distal tendon transfer of the biceps brachii and the brachialis muscles. Journal of Biomechanics, 27(8): 1005-1014.
- [14] Neptune, R. R., Sasaki, K., Kautz, S. A. (2008). The effect of walking speed on muscle function and mechanical energetics. Gait & Posture, 28(1): 135-143.
[
15] Maas, R., Siebert, T.,Leyendecker, S. (2012). On the relevance of structure preservation to simulations of muscle actuated movements. Biomechanics and Modeling in Mechanobiology, 11(3-4): 543-556.
- [16] Rupp, T. K., Ehlers, W., Karajan, N., Günther, M., Schmitt, S. (2015). A forward dynamics simulation of human lumbar spine flexion predicting the load sharing of intervertebral discs, ligaments, and muscles. Biomechanics and Modeling in Mechanobiology, 14(5): 1081-1105.
- [17] Bernabei, M., van Dieën, J. H., Baan, G. C., Maas, H. (2015). Significant mechanical interactions at physiological lengths and relative positions of rat plantar flexors. Journal of Applied Physiology, 118(4): 427-436.
- [18] Reinhardt, L., Siebert, T., Leichsenring, K., Blickhan, R., Böl, M. (2016). Intermuscular pressure between synergistic muscles correlates with muscle force. Journal of Experimental Biology, 219(15): 2311-2319.
- [19] Delp, S. L., Loan, J. P., Hoy, M. G., Zajac, F. E., Topp, E. L., Rosen, J. M. (1990). An interactive graphics-based model of the lower extremity to study orthopaedic surgical procedures. IEEE Transactions on Biomedical Engineering, 37(8): 757-767.
- [20] Edman, K. A. (1988). Double‐hyperbolic force‐velocity relation in frog muscle fibres. The Journal of Physiology, 404(1): 301-321.
- [21] Gordon, A. M., Huxley, A. F., Julian, F. J. (1966). The variation in isometric tension with sarcomere length in vertebrate muscle fibres. The Journal of Physiology, 184(1): 170-192.
- [22] Katz, B. (1939). The relation between force and speed in muscular contraction. The Journal of Physiology, 96(1): 45-64.
- [23] Lieber, R. L., Boakes, J. L. (1988). Muscle force and moment arm contributions to torque production in frog hindlimb. American Journal of Physiology-Cell Physiology, 254(6): 769-772.
- [24] Scott, S. H., Brown, I. E., Loeb, G. E. (1996). Mechanics of feline soleus: I. Effect of fascicle length and velocity on force output. Journal of Muscle Research & Cell Motility, 17(2): 207-219.
- [25] Lieber, R. L. (1993). Skeletal Muscle Architecture: Implications for Muscle Function and Surgical Tendon Transfer. Journal of Hand Therapy, 6(2): 105-113.
- [26] Shue, G. H., Crago, P. E. (1998). Muscle–tendon model with length history-dependent activation–velocity coupling. Annals of Biomedical Engineering, 26(3): 369-380.
- [27] Van Donkelaar, C. C., Willems, P. J. B., Muijtjens, A. M. M., Drost, M. R. (1999). Skeletal muscle transverse strain during isometric contraction at different lengths. Journal of Biomechanics, 32(8): 755-762.
- [28] Stäubli, H. U., Schatzmann, L., Brunner, P., Rincón, L., Nolte, L. P. (1999). Mechanical tensile properties of the quadriceps tendon and patellar ligament in young adults. The American Journal of Sports Medicine, 27(1): 27-34.
- [29] Holzbaur, K. R., Murray, W. M., Delp, S. L. (2005). A model of the upper extremity for simulating musculoskeletal surgery and analyzing neuromuscular control. Annals of Biomedical Engineering, 33(6): 829-840.
- [30] Martinek, J., Stickler, Y., Reichel, M., Mayr, W., Rattay, F. (2008). A Novel Approach to Simulate Hodgkin–Huxley‐like Excitation With COMSOL Multiphysics. Artificial Organs, 32(8): 614-619.
- [31] Kocbach, J., Folgero, K., Mohn, L., Brix, O. (2011). A simulation approach to optimizing performance of equipment for thermostimulation of muscle tissue using COMSOL multiphysics. Biophysics and Bioengineering Letters, 4(2): 9-33.
- [32] Carbone, V., van der Krogt, M. M., Koopman, H. F., Verdonschot, N. (2016). Sensitivity of subject-specific models to Hill muscle–tendon model parameters in simulations of gait. Journal of Biomechanics, 49(9): 1953-1960.
- [33] Esmaeili, J., Maleki, A. (2020). Muscle coordination analysis by time-varying muscle synergy extraction during cycling across various mechanical conditions. Biocybernetics and Biomedical Engineering, 40(1): 90-99.
A mechanical model and stress-strain response of the biceps brachii under static load
Year 2022,
Volume: 6 Issue: 1, 27 - 31, 20.03.2022
Hamid Asadi Dereshgı
,
Kasım Serbest
,
Sema Nur Şahin
,
Büşra Balık
Abstract
Muscle contraction is a complex phenomenon that begins with chemical processes, continues physiologically, and leads to the production of force. Although the production of force in the muscles depends on factors such as temperature, age, gender, race, but the most important factor is the external load applied to the muscle. Determining the effects of increased load on muscle mechanics is of particular importance for planning exercise activities and rehabilitation processes. In this study, the effects of different external forces on the stress and pressure behavior of the muscle were examined on a simplified model of the biceps. Accordingly, a finite element model of the biceps brachii muscle fiber was constructed. The application of different static loads (2.5 – 100 N) on both the proximal tendon (one-directional) and the proximal and distal tendon (bidirectional) together were investigated. According to the results, it was found that the external force applied in both directions causes a significant increase in displacement behavior and stress.
Project Number
2021-01-04-055
References
- [1] Pandy, M. G., Barr, R. E. (2004). Biomechanics of the musculoskeletal system. Standard Handbook of Biomedical Engineering & Design. McGRAW-HILL.
- [2] Nordin, M., Frankel, V. H. (2001). Basic Biomechanics of the Musculoskeletal System. Lippincott Williams & Wilkins, USA.
- [3] Huxley, H. E. (1969). The mechanism of muscular contraction. Science, 164(3886): 1356-1366.
- [4] Huxley, A. F. (1974). Muscular contraction. The Journal of Physiology, 243(1): 1.
- [5] Hatze, H. (1981). Myocybernetic Control Models of Skeletal Muscle. Characteristics and Applications, University of South Africa.
- [6] Riek, S., Chapman, A. E., Milner, T. (1999). A simulation of muscle force and internal kinematics of extensor carpi radialis brevis during backhand tennis stroke: implications for injury. Clinical Biomechanics, 14(7): 477-483.
- [7] Stojanovic, B., Kojic, M., Rosic, M., Tsui, C. P., Tang, C. Y. (2007). An extension of Hill's three‐component model to include different fibre types in finite element modelling of muscle. International Journal for Numerical Methods in Engineering, 71(7): 801-817.
- [8] Tang, C. Y., Tsui, C. P., Stojanovic, B., Kojic, M. (2007). Finite element modelling of skeletal muscles coupled with fatigue. International Journal of Mechanical Sciences, 49(10): 1179-1191.
- [9] Siebert, T., Stutzig, N., Rode, C. (2018). A hill-type muscle model expansion accounting for effects of varying transverse muscle load. Journal of Biomechanics, 66: 57-62.
- [10] Wittek, A., Kajzer, J., Haug, E. (2000). Hill-type muscle model for analysis of mechanical effect of muscle tension on the human body response in a car collision using an explicit finite element code. JSME International Journal Series A Solid Mechanics and Material Engineering, 43(1): 8-18.
- [11] Audu, M. L., Davy, D. T. (1985). The influence of muscle model complexity in musculoskeletal motion modeling. Journal of Biomechanical Engineering, 107(2): 147-157.
- [12] Pandy, M. G., Zajac, F. E., Sim, E., Levine, W. S. (1990). An optimal control model for maximum-height human jumping. Journal of Biomechanics, 23(12): 1185-1198.
- [13] Giat, Y., Mizrahi, J., Levine, W. S., Chen, J. (1994). Simulation of distal tendon transfer of the biceps brachii and the brachialis muscles. Journal of Biomechanics, 27(8): 1005-1014.
- [14] Neptune, R. R., Sasaki, K., Kautz, S. A. (2008). The effect of walking speed on muscle function and mechanical energetics. Gait & Posture, 28(1): 135-143.
[
15] Maas, R., Siebert, T.,Leyendecker, S. (2012). On the relevance of structure preservation to simulations of muscle actuated movements. Biomechanics and Modeling in Mechanobiology, 11(3-4): 543-556.
- [16] Rupp, T. K., Ehlers, W., Karajan, N., Günther, M., Schmitt, S. (2015). A forward dynamics simulation of human lumbar spine flexion predicting the load sharing of intervertebral discs, ligaments, and muscles. Biomechanics and Modeling in Mechanobiology, 14(5): 1081-1105.
- [17] Bernabei, M., van Dieën, J. H., Baan, G. C., Maas, H. (2015). Significant mechanical interactions at physiological lengths and relative positions of rat plantar flexors. Journal of Applied Physiology, 118(4): 427-436.
- [18] Reinhardt, L., Siebert, T., Leichsenring, K., Blickhan, R., Böl, M. (2016). Intermuscular pressure between synergistic muscles correlates with muscle force. Journal of Experimental Biology, 219(15): 2311-2319.
- [19] Delp, S. L., Loan, J. P., Hoy, M. G., Zajac, F. E., Topp, E. L., Rosen, J. M. (1990). An interactive graphics-based model of the lower extremity to study orthopaedic surgical procedures. IEEE Transactions on Biomedical Engineering, 37(8): 757-767.
- [20] Edman, K. A. (1988). Double‐hyperbolic force‐velocity relation in frog muscle fibres. The Journal of Physiology, 404(1): 301-321.
- [21] Gordon, A. M., Huxley, A. F., Julian, F. J. (1966). The variation in isometric tension with sarcomere length in vertebrate muscle fibres. The Journal of Physiology, 184(1): 170-192.
- [22] Katz, B. (1939). The relation between force and speed in muscular contraction. The Journal of Physiology, 96(1): 45-64.
- [23] Lieber, R. L., Boakes, J. L. (1988). Muscle force and moment arm contributions to torque production in frog hindlimb. American Journal of Physiology-Cell Physiology, 254(6): 769-772.
- [24] Scott, S. H., Brown, I. E., Loeb, G. E. (1996). Mechanics of feline soleus: I. Effect of fascicle length and velocity on force output. Journal of Muscle Research & Cell Motility, 17(2): 207-219.
- [25] Lieber, R. L. (1993). Skeletal Muscle Architecture: Implications for Muscle Function and Surgical Tendon Transfer. Journal of Hand Therapy, 6(2): 105-113.
- [26] Shue, G. H., Crago, P. E. (1998). Muscle–tendon model with length history-dependent activation–velocity coupling. Annals of Biomedical Engineering, 26(3): 369-380.
- [27] Van Donkelaar, C. C., Willems, P. J. B., Muijtjens, A. M. M., Drost, M. R. (1999). Skeletal muscle transverse strain during isometric contraction at different lengths. Journal of Biomechanics, 32(8): 755-762.
- [28] Stäubli, H. U., Schatzmann, L., Brunner, P., Rincón, L., Nolte, L. P. (1999). Mechanical tensile properties of the quadriceps tendon and patellar ligament in young adults. The American Journal of Sports Medicine, 27(1): 27-34.
- [29] Holzbaur, K. R., Murray, W. M., Delp, S. L. (2005). A model of the upper extremity for simulating musculoskeletal surgery and analyzing neuromuscular control. Annals of Biomedical Engineering, 33(6): 829-840.
- [30] Martinek, J., Stickler, Y., Reichel, M., Mayr, W., Rattay, F. (2008). A Novel Approach to Simulate Hodgkin–Huxley‐like Excitation With COMSOL Multiphysics. Artificial Organs, 32(8): 614-619.
- [31] Kocbach, J., Folgero, K., Mohn, L., Brix, O. (2011). A simulation approach to optimizing performance of equipment for thermostimulation of muscle tissue using COMSOL multiphysics. Biophysics and Bioengineering Letters, 4(2): 9-33.
- [32] Carbone, V., van der Krogt, M. M., Koopman, H. F., Verdonschot, N. (2016). Sensitivity of subject-specific models to Hill muscle–tendon model parameters in simulations of gait. Journal of Biomechanics, 49(9): 1953-1960.
- [33] Esmaeili, J., Maleki, A. (2020). Muscle coordination analysis by time-varying muscle synergy extraction during cycling across various mechanical conditions. Biocybernetics and Biomedical Engineering, 40(1): 90-99.