Research Article
BibTex RIS Cite
Year 2022, Volume: 6 Issue: 2, 129 - 137, 26.06.2022
https://doi.org/10.26701/ems.1027181

Abstract

References

  • Bukanin, V. A., Ivanov, A. N., Zenkov, A. E., Vologdin, V. V., & Vologdin Jr, V. V. 2018. Induction Hardening of External Gear. Management Science and Engineering, 327(2), 022016. https://doi.org/10.1088/1757-899X/327/2/022016 

  • Dawson, F. P., & Jain, P. 1990. Systems for induction heating and melting applications: a comparison of load commutated inverter. In 21st Annual IEEE Conference on Power Electronics Specialists (pp. 281-290). IEEE.
  • Magnabosco, I., Ferro, P., Tiziani, A., & Bonollo, F. 2006. Induction heat treatment of a ISO C45 steel bar: Experimental and numerical analysis. Computational materials science, 35(2), 98-106. https://doi.org/10.1016/j.commatsci.2005.03.010 

  • Jomaa, W., Songmene, V., & Bocher, P. 2013. On residual stress changes after orthogonal machining of induction hardened AISI 4340 steel. In Proceedings of Materials Science and Technology Conference and Exhibition, MS&T, 13, 94-103.
  • Lucia, O., Acero, J., Carretero, C., & Burdio, J. M. 2013. Induction heating appliances: Toward more flexible cooking surfaces. IEEE Industrial Electronics Magazine, 7(3), 35-47.
  • Jankowski, T. A., Pawley, N. H., Gonzales, L. M., Ross, C. A., & Jurney, J. D. 2016. Approximate analytical solution for induction heating of solid cylinders. Applied Mathematical Modelling, 40(4), 2770-2782. https://doi.org/10.1016/j.apm.2015.10.006 

  • Tavakoli, M. H., Ojaghi, A., Mohammadi-Manesh, E., & Mansour, M. 2009. Influence of coil geometry on the induction heating process in crystal growth systems. Journal of crystal growth, 311(6), 1594-1599. https://doi.org/10.1016/j.jcrysgro.2009.01.092 

  • Chaboudez, C., Clain, S., Glardon, R., Rappaz, J., Swierkosz, M., & Touzani, R. 1994. Numerical modeling of induction heating of long workpieces. IEEE transactions on magnetics, 30(6), 5028-5037.
  • Fu, X., Wang, B., Tang, X., Ji, H., & Zhu, X. 2017. Study on induction heating of workpiece before gear rolling process with different coil structures. Applied Thermal Engineering, 114, 1-9. https://doi.org/10.1016/j.applthermaleng.2016.11.192 

  • Baldan, M., Cetin, M., Nikanorov, A., & Nacke, B. 2019. Optimal Design of Magnetic Flux Concentrators in Induction Heating. In 2019 XXI International Conference Complex Systems: Control and Modeling Problems (CSCMP) (pp. 203-207). IEEE.
  • Bukanin, V., Ivanov, A., & Zenkov, A. 2019. Investigation of heating and melting in ELTA programs. COMPEL-The international journal for computation and mathematics in electrical and electronic engineering.
  • Bukanin, V. A., Zenkov, A. E., & Ivanov, A. N. 2017. Simulation of single and dual-frequency induction hardening of steel gear using ELTA. In 2017 IEEE Conference of Russian Young Researchers in Electrical and Electronic Engineering (EIConRus) (pp. 791-795). IEEE.
  • M. Fisk. 2011. Simulation of induction heating in manufacturing. International Journal for Computational Methods in Engineering Science and Mechanics,12,161-167.
  • Chen, H. C., & Huang, K. H. 2008. Finite element analysis of coupled electromagnetic and thermal fields within a practical induction heating cooker. International Journal of Applied Electromagnetics and Mechanics, 28(4), 413-427.
  • Candeo, A., Ducassy, C., Bocher, P., & Dughiero, F. (2011). Multiphysics modeling of induction hardening of ring gears for the aerospace industry. IEEE Transactions on Magnetics, 47(5), 918-921.
  • Frogner, K., Andersson, M., Cedell, T., Siesing, L., Jeppsson, P., & Ståhl, J. 2011. Industrial heating using energy efficient induction technology. In Proc. Int. Conf. Manuf. Syst. (pp. 1-6).
  • Hadhri, M., El Ouafi, A., & Barka, N. 2017. Prediction of the hardness profile of an AISI 4340 steel cylinder heat-treated by laser-3D and artificial neural networks modelling and experimental validation. Journal of Mechanical Science and Technology, 31(2), 615-623.
  • Pape, J. A., & Neu, R. W. 2007. A comparative study of the fretting fatigue behavior of 4340 steel and PH 13-8 Mo stainless steel. International journal of fatigue, 29(12), 2219-2229.
  • Maamri, I., El Ouafi, A., & Barka, N. 2014. Prediction of 4340 steel hardness profile heat-treated by laser using artificial neural networks and multi regression approaches. International Journal of Engineering and Innovative Technology, 4(6), 14-22.
  • Bilal, M. M., Yaqoob, K., Zahid, M. H., Tanveer, W. H., Wadood, A., & Ahmed, B. 2019. Effect of austempering conditions on the microstructure and mechanical properties of AISI 4340 and AISI 4140 steels. Journal of Materials Research and Technology, 8(6), 5194-5200.

Numerical simulation of a magnetic induction coil for heat treatment of an AISI 4340 gear

Year 2022, Volume: 6 Issue: 2, 129 - 137, 26.06.2022
https://doi.org/10.26701/ems.1027181

Abstract

In manufacturing industry, heat treatment is a fundamental requirement for improving the material quality of readily manufactured products. Induction heating technology is repeatable and easily controlled by the advantage of having an electronical control unit. Nowadays, numerical methods have gained so much importance that it become as a reference for the induction heating industry. Experimental methods are costly and time demanding procedures. However, making use of finite element method software, induction heating simulations of a steel gear can be performed relatively cost effective and in a short time. In this paper, induction heating simulation of an AISI 4340 steel gear using FEA software is performed. The effect of variation of inductor frequency and gear workpiece-inductor coil distance on the hardening depth of the gear surface is investigated. The temperature profile of the workpiece is obtained. From the temperature distribution on the steel gear workpiece, the regions of the gear at which the austenitizing temperature (Ac3) - responsible for martensite phase formation- are observed. From the numerical results, hardening profile and hardening depth of the gear is interpreted.

References

  • Bukanin, V. A., Ivanov, A. N., Zenkov, A. E., Vologdin, V. V., & Vologdin Jr, V. V. 2018. Induction Hardening of External Gear. Management Science and Engineering, 327(2), 022016. https://doi.org/10.1088/1757-899X/327/2/022016 

  • Dawson, F. P., & Jain, P. 1990. Systems for induction heating and melting applications: a comparison of load commutated inverter. In 21st Annual IEEE Conference on Power Electronics Specialists (pp. 281-290). IEEE.
  • Magnabosco, I., Ferro, P., Tiziani, A., & Bonollo, F. 2006. Induction heat treatment of a ISO C45 steel bar: Experimental and numerical analysis. Computational materials science, 35(2), 98-106. https://doi.org/10.1016/j.commatsci.2005.03.010 

  • Jomaa, W., Songmene, V., & Bocher, P. 2013. On residual stress changes after orthogonal machining of induction hardened AISI 4340 steel. In Proceedings of Materials Science and Technology Conference and Exhibition, MS&T, 13, 94-103.
  • Lucia, O., Acero, J., Carretero, C., & Burdio, J. M. 2013. Induction heating appliances: Toward more flexible cooking surfaces. IEEE Industrial Electronics Magazine, 7(3), 35-47.
  • Jankowski, T. A., Pawley, N. H., Gonzales, L. M., Ross, C. A., & Jurney, J. D. 2016. Approximate analytical solution for induction heating of solid cylinders. Applied Mathematical Modelling, 40(4), 2770-2782. https://doi.org/10.1016/j.apm.2015.10.006 

  • Tavakoli, M. H., Ojaghi, A., Mohammadi-Manesh, E., & Mansour, M. 2009. Influence of coil geometry on the induction heating process in crystal growth systems. Journal of crystal growth, 311(6), 1594-1599. https://doi.org/10.1016/j.jcrysgro.2009.01.092 

  • Chaboudez, C., Clain, S., Glardon, R., Rappaz, J., Swierkosz, M., & Touzani, R. 1994. Numerical modeling of induction heating of long workpieces. IEEE transactions on magnetics, 30(6), 5028-5037.
  • Fu, X., Wang, B., Tang, X., Ji, H., & Zhu, X. 2017. Study on induction heating of workpiece before gear rolling process with different coil structures. Applied Thermal Engineering, 114, 1-9. https://doi.org/10.1016/j.applthermaleng.2016.11.192 

  • Baldan, M., Cetin, M., Nikanorov, A., & Nacke, B. 2019. Optimal Design of Magnetic Flux Concentrators in Induction Heating. In 2019 XXI International Conference Complex Systems: Control and Modeling Problems (CSCMP) (pp. 203-207). IEEE.
  • Bukanin, V., Ivanov, A., & Zenkov, A. 2019. Investigation of heating and melting in ELTA programs. COMPEL-The international journal for computation and mathematics in electrical and electronic engineering.
  • Bukanin, V. A., Zenkov, A. E., & Ivanov, A. N. 2017. Simulation of single and dual-frequency induction hardening of steel gear using ELTA. In 2017 IEEE Conference of Russian Young Researchers in Electrical and Electronic Engineering (EIConRus) (pp. 791-795). IEEE.
  • M. Fisk. 2011. Simulation of induction heating in manufacturing. International Journal for Computational Methods in Engineering Science and Mechanics,12,161-167.
  • Chen, H. C., & Huang, K. H. 2008. Finite element analysis of coupled electromagnetic and thermal fields within a practical induction heating cooker. International Journal of Applied Electromagnetics and Mechanics, 28(4), 413-427.
  • Candeo, A., Ducassy, C., Bocher, P., & Dughiero, F. (2011). Multiphysics modeling of induction hardening of ring gears for the aerospace industry. IEEE Transactions on Magnetics, 47(5), 918-921.
  • Frogner, K., Andersson, M., Cedell, T., Siesing, L., Jeppsson, P., & Ståhl, J. 2011. Industrial heating using energy efficient induction technology. In Proc. Int. Conf. Manuf. Syst. (pp. 1-6).
  • Hadhri, M., El Ouafi, A., & Barka, N. 2017. Prediction of the hardness profile of an AISI 4340 steel cylinder heat-treated by laser-3D and artificial neural networks modelling and experimental validation. Journal of Mechanical Science and Technology, 31(2), 615-623.
  • Pape, J. A., & Neu, R. W. 2007. A comparative study of the fretting fatigue behavior of 4340 steel and PH 13-8 Mo stainless steel. International journal of fatigue, 29(12), 2219-2229.
  • Maamri, I., El Ouafi, A., & Barka, N. 2014. Prediction of 4340 steel hardness profile heat-treated by laser using artificial neural networks and multi regression approaches. International Journal of Engineering and Innovative Technology, 4(6), 14-22.
  • Bilal, M. M., Yaqoob, K., Zahid, M. H., Tanveer, W. H., Wadood, A., & Ahmed, B. 2019. Effect of austempering conditions on the microstructure and mechanical properties of AISI 4340 and AISI 4140 steels. Journal of Materials Research and Technology, 8(6), 5194-5200.
There are 20 citations in total.

Details

Primary Language English
Subjects Mechanical Engineering
Journal Section Research Article
Authors

Önder Sönmez 0000-0003-3356-5334

Deniz Kaya 0000-0002-1951-2466

владимир буканин 0000-0002-0215-7621

Aleksandr Ivanov This is me 0000-0002-9598-1344

Publication Date June 26, 2022
Acceptance Date March 24, 2022
Published in Issue Year 2022 Volume: 6 Issue: 2

Cite

APA Sönmez, Ö., Kaya, D., буканин, в., Ivanov, A. (2022). Numerical simulation of a magnetic induction coil for heat treatment of an AISI 4340 gear. European Mechanical Science, 6(2), 129-137. https://doi.org/10.26701/ems.1027181
AMA Sönmez Ö, Kaya D, буканин в, Ivanov A. Numerical simulation of a magnetic induction coil for heat treatment of an AISI 4340 gear. EMS. June 2022;6(2):129-137. doi:10.26701/ems.1027181
Chicago Sönmez, Önder, Deniz Kaya, владимир буканин, and Aleksandr Ivanov. “Numerical Simulation of a Magnetic Induction Coil for Heat Treatment of an AISI 4340 Gear”. European Mechanical Science 6, no. 2 (June 2022): 129-37. https://doi.org/10.26701/ems.1027181.
EndNote Sönmez Ö, Kaya D, буканин в, Ivanov A (June 1, 2022) Numerical simulation of a magnetic induction coil for heat treatment of an AISI 4340 gear. European Mechanical Science 6 2 129–137.
IEEE Ö. Sönmez, D. Kaya, в. буканин, and A. Ivanov, “Numerical simulation of a magnetic induction coil for heat treatment of an AISI 4340 gear”, EMS, vol. 6, no. 2, pp. 129–137, 2022, doi: 10.26701/ems.1027181.
ISNAD Sönmez, Önder et al. “Numerical Simulation of a Magnetic Induction Coil for Heat Treatment of an AISI 4340 Gear”. European Mechanical Science 6/2 (June 2022), 129-137. https://doi.org/10.26701/ems.1027181.
JAMA Sönmez Ö, Kaya D, буканин в, Ivanov A. Numerical simulation of a magnetic induction coil for heat treatment of an AISI 4340 gear. EMS. 2022;6:129–137.
MLA Sönmez, Önder et al. “Numerical Simulation of a Magnetic Induction Coil for Heat Treatment of an AISI 4340 Gear”. European Mechanical Science, vol. 6, no. 2, 2022, pp. 129-37, doi:10.26701/ems.1027181.
Vancouver Sönmez Ö, Kaya D, буканин в, Ivanov A. Numerical simulation of a magnetic induction coil for heat treatment of an AISI 4340 gear. EMS. 2022;6(2):129-37.

Dergi TR Dizin'de Taranmaktadır.

Flag Counter