Role of sintering conditions on structural and mechanical properties of carbon fiber fabric reinforced ZrB2-Sic composites
Year 2022,
Volume: 6 Issue: 4, 278 - 284, 20.12.2022
Aslı Asiye Ağıl
,
Erhan Ayas
Abstract
In this study, the effects of sintering conditions on the structural and mechanical properties of spark plasma sintered ZrB2-based composites were investigated in detail. In addition, to observe the impact of the binder, the binder was used in some materials. Thus, the effects of binder on the properties of composites while preparing ceramic slurry were tested. The effects of the sintering conditions of the materials prepared at different temperatures and stages on the composites were examined in detail. The densities, phase developments, microstructure analyses and mechanical properties of the composites were determined by the Archimedes principle, X-Ray Diffraction, Scanning Electron Microscopy, and three-point bending test, respectively.
Supporting Institution
Eskişehir Teknik Üniversitesi Bilimsel Araştırma Projeleri
Thanks
This work was supported by the Research Fund of Eskişehir Technical University, Eskişehir, Turkey, under Grant Contract No: 20DRP021.
References
- [1] Ding, Y., Dong, S., Huang, Z., Jiang, D. (2007). Fabrication of short C fiber-reinforced SiC composites by spark plasma sintering. Ceramics International, 33, 1, 101–105, DOI: 10.1016/j.ceramint.2005.08.004.
- [2] Tang, S., Deng, J., Wang, S., Liu, W. (2007). Fabrication and characterization of an ultrahigh-temperature carbon fiber-reinforced ZrB2-SiC matrix composite. Journal of American Ceramic Society, 90, 10, 3320–3322, DOI: 10.1111/j.1551-2916.2007.01876.x.
- [3] Akin, I., Hotta, M., Sahin, F.C., Yucel, O., Goller, G., Goto, T. (2009). Microstructure and densification of ZrB2-SiC composites prepared by spark plasma sintering. Journal European Ceramic Society, 29, 11, 2379–2385, DOI: 10.1016/j.jeurceramsoc.2009.01.011.
- [4] Hu, H., Wang, Q., Chen, Z., Zhang, C., Zhang, Y., Wang, J. (2010). Preparation and characterization of C/SiC-ZrB2 composites by precursor infiltration and pyrolysis process. Ceramics International, 36, 1011–1016, DOI: 10.1016/j.ceramint.2009.11.015.
- [5] Shahedi Asl, M. (2017). Microstructure, hardness and fracture toughness of spark plasma sintered ZrB2–SiC–Cf composites. Ceramics International, 43, 17, 15047–15052, DOI: 10.1016/j.ceramint.2017.08.030.
- [6] Balak, Z., Zakeri, M. (2016). Application of Taguchi L32 orthogonal design to optimize flexural strength of ZrB2-based composites prepared by spark plasma sintering. International Journal of Refractory Metals and Hard Materials, 55, 58-67, DOI: 10.1016/j.ijrmhm.2015.11.009.
- [7] Karimirad, S., Balak, Z. (2019). Characteristics of spark plasma sintered ZrB2-SiC-SCFs composites. Ceramics International, 45, 5, 6275-6281, DOI: 10.1016/j.ceramint.2018.12.109.
- [8] ASTM C 373-88: Standard Test Method for Water Absorption, Bulk Density, Apparent Porosity, and Apparent Specific Gravity of Fired Whiteware Products, 2006.
- [9] Zoli, L., Vinci, A., Silvestroni, L., Sciti, D., Reece, M., Grasso, S. (2017). Rapid spark plasma sintering to produce dense UHTCs reinforced with undamaged carbon fibres. Materials & Design, 130, 1–7, DOI:10.1016/j.matdes.2017.05.029.
- [10] Monteverde, F., Guicciardi, S., Bellosi, A. (2003). Advances in microstructure and mechanical properties of zirconium diboride based ceramics, Materials Science and Engineering: A, 346, 310–319, DOI: 10.1016/S0921-5093(02)00520-8.
- [11] Silvestroni, L., Dalle Fabbriche, D., Melandri, C., Sciti, D. (2016). Relationships between carbon fiber type and interfacial domain in ZrB2-based ceramics, Journal of the European Ceramic Society, 36, 17–24, DOI: 10.1016/j.jeurceramsoc.2015.09.026.
- [12] Sciti, D., Silvestroni, L., Medri, V., Monteverde, F. (2014). Sintering and densification of ultrahigh temperature ceramics, in: W. Fahrenholtz, E. Wuchina, W. Lee, Y. Zhou (Eds.), Ultra-high Temperature Ceramics: Materials for Extreme Environment Applications, Wiley, Inc., 112–143 ISBN 0-471-9781118700785, DOI: 10.1002/9781118700853.ch6.
- [13] Silvestroni, L., Fabbriche, D.D., Sciti, D. (2015). Tyranno SA3 fiber–ZrB2 composites. Part I: microstructure and densification, Materials & Design, 65, 1253–1263, DOI:10.1016/j.matdes.2014.08.068.
- [14] Zhao, P., Zhao, X., Wang, H. (2019). Processing and Properties of Laminated ZrB2-Mo5SiB2 Ceramic Composites Fabricated by Tape casting and Hot Pressing Sintering. IOP Conf. Series: Materials Science and Engineering, 678, 012072, DOI: 10.1088/1757-899X/678/1/012072.
- [15] Zhang, D., Hu, P., Feng, J., Xie, M., Zhao, H., Zhang, X. (2019). Characterization and mechanical properties of Cf/ZrB2-SiC composites fabricated by a hybrid technique based on slurry impregnation, polymer infiltration and pyrolysis and low-temperature hot pressing. Ceramics International, 45, 5467–5474, DOI: 10.1016/j.ceramint.2018.12.001.
- [16] Bakera, B., Rubiob, V., Ramanujamc, P., Binnera, J., Hussaind, A., Ackermand, T., Browne, P., Dautremontf, I. (2019). Development of a slurry injection technique for continuous fibre ultra-high temperature ceramic matrix composites. Journal of the European Ceramic Society, 39, 3927–3937, DOI: 10.1016/j.jeurceramsoc.2019.05.070.
Year 2022,
Volume: 6 Issue: 4, 278 - 284, 20.12.2022
Aslı Asiye Ağıl
,
Erhan Ayas
References
- [1] Ding, Y., Dong, S., Huang, Z., Jiang, D. (2007). Fabrication of short C fiber-reinforced SiC composites by spark plasma sintering. Ceramics International, 33, 1, 101–105, DOI: 10.1016/j.ceramint.2005.08.004.
- [2] Tang, S., Deng, J., Wang, S., Liu, W. (2007). Fabrication and characterization of an ultrahigh-temperature carbon fiber-reinforced ZrB2-SiC matrix composite. Journal of American Ceramic Society, 90, 10, 3320–3322, DOI: 10.1111/j.1551-2916.2007.01876.x.
- [3] Akin, I., Hotta, M., Sahin, F.C., Yucel, O., Goller, G., Goto, T. (2009). Microstructure and densification of ZrB2-SiC composites prepared by spark plasma sintering. Journal European Ceramic Society, 29, 11, 2379–2385, DOI: 10.1016/j.jeurceramsoc.2009.01.011.
- [4] Hu, H., Wang, Q., Chen, Z., Zhang, C., Zhang, Y., Wang, J. (2010). Preparation and characterization of C/SiC-ZrB2 composites by precursor infiltration and pyrolysis process. Ceramics International, 36, 1011–1016, DOI: 10.1016/j.ceramint.2009.11.015.
- [5] Shahedi Asl, M. (2017). Microstructure, hardness and fracture toughness of spark plasma sintered ZrB2–SiC–Cf composites. Ceramics International, 43, 17, 15047–15052, DOI: 10.1016/j.ceramint.2017.08.030.
- [6] Balak, Z., Zakeri, M. (2016). Application of Taguchi L32 orthogonal design to optimize flexural strength of ZrB2-based composites prepared by spark plasma sintering. International Journal of Refractory Metals and Hard Materials, 55, 58-67, DOI: 10.1016/j.ijrmhm.2015.11.009.
- [7] Karimirad, S., Balak, Z. (2019). Characteristics of spark plasma sintered ZrB2-SiC-SCFs composites. Ceramics International, 45, 5, 6275-6281, DOI: 10.1016/j.ceramint.2018.12.109.
- [8] ASTM C 373-88: Standard Test Method for Water Absorption, Bulk Density, Apparent Porosity, and Apparent Specific Gravity of Fired Whiteware Products, 2006.
- [9] Zoli, L., Vinci, A., Silvestroni, L., Sciti, D., Reece, M., Grasso, S. (2017). Rapid spark plasma sintering to produce dense UHTCs reinforced with undamaged carbon fibres. Materials & Design, 130, 1–7, DOI:10.1016/j.matdes.2017.05.029.
- [10] Monteverde, F., Guicciardi, S., Bellosi, A. (2003). Advances in microstructure and mechanical properties of zirconium diboride based ceramics, Materials Science and Engineering: A, 346, 310–319, DOI: 10.1016/S0921-5093(02)00520-8.
- [11] Silvestroni, L., Dalle Fabbriche, D., Melandri, C., Sciti, D. (2016). Relationships between carbon fiber type and interfacial domain in ZrB2-based ceramics, Journal of the European Ceramic Society, 36, 17–24, DOI: 10.1016/j.jeurceramsoc.2015.09.026.
- [12] Sciti, D., Silvestroni, L., Medri, V., Monteverde, F. (2014). Sintering and densification of ultrahigh temperature ceramics, in: W. Fahrenholtz, E. Wuchina, W. Lee, Y. Zhou (Eds.), Ultra-high Temperature Ceramics: Materials for Extreme Environment Applications, Wiley, Inc., 112–143 ISBN 0-471-9781118700785, DOI: 10.1002/9781118700853.ch6.
- [13] Silvestroni, L., Fabbriche, D.D., Sciti, D. (2015). Tyranno SA3 fiber–ZrB2 composites. Part I: microstructure and densification, Materials & Design, 65, 1253–1263, DOI:10.1016/j.matdes.2014.08.068.
- [14] Zhao, P., Zhao, X., Wang, H. (2019). Processing and Properties of Laminated ZrB2-Mo5SiB2 Ceramic Composites Fabricated by Tape casting and Hot Pressing Sintering. IOP Conf. Series: Materials Science and Engineering, 678, 012072, DOI: 10.1088/1757-899X/678/1/012072.
- [15] Zhang, D., Hu, P., Feng, J., Xie, M., Zhao, H., Zhang, X. (2019). Characterization and mechanical properties of Cf/ZrB2-SiC composites fabricated by a hybrid technique based on slurry impregnation, polymer infiltration and pyrolysis and low-temperature hot pressing. Ceramics International, 45, 5467–5474, DOI: 10.1016/j.ceramint.2018.12.001.
- [16] Bakera, B., Rubiob, V., Ramanujamc, P., Binnera, J., Hussaind, A., Ackermand, T., Browne, P., Dautremontf, I. (2019). Development of a slurry injection technique for continuous fibre ultra-high temperature ceramic matrix composites. Journal of the European Ceramic Society, 39, 3927–3937, DOI: 10.1016/j.jeurceramsoc.2019.05.070.