Research Article
BibTex RIS Cite
Year 2023, Volume: 7 Issue: 2, 63 - 69, 20.06.2023
https://doi.org/10.26701/ems.1206422

Abstract

References

  • [1] Cui Ch., Hu B., Zhao L., and Liu S., (2011) “Titanium alloy production technology, market prospects and industry development”, Materials & Design, 32(3), pp.1684-1691
  • [2] Selvan J. S., Subramania, K., Nath A.K. et al., (1998) “Hardness, microstructure and surface characterization of laser gas nitrided commercially pure titanium using high power CO2 laser,” J. of Mater. Eng and Perform, 7(5), pp. 647-655.
  • [3] Banerjee D. and Williams J.C., (2013) “Perspectives on titanium science and technology”, Acta Mater. 61, pp. 844–879.
  • [4] Babuska, V., Palan J., Kolaja D., Kulda V., Duchek M., Cerny J. and Hrusak D. (2018) “Proliferation of Osteoblasts on Laser-Modified Nanostructured Titanium Surfaces”, Materials 11, 1827.
  • [5] Ozcan M. and Hammerle C., (2012) “Titanium as a reconstruction and implant material in dentistry: Advantages and. pitfalls.”, Materials 5, pp. 1528–1545.
  • [6] Cordeiro M.J. and Barão, R.A.V., (2017) “Is there scientific evidence favoring the substitution of commercially pure titanium with titanium alloys for the manufacture of dental implants?”, Mater. Sci. Eng. C, 71, pp. 1201–1215.
  • [7] Rupp F., Liang L., Geis-Gerstorfer J., Scheideler L. and Hüttig F., (2018) “Surface characteristics of dental implants: A review.”, Dent. Mater. , 34, pp.40–57.
  • [8] Kurella A. and Dahotre N., (2005) “Review paper: Surface Modification for Bioimplants: The Role of Laser Surface.”, J. Biomater. Appl., 20, pp. 5–50.
  • [9] Lin Y., Huang C.F., Cheng H.C. and Shen, Y.K. (2013) “A modified surface on titanium alloy by micro-blasting process.”, Adv. Mater. Res., 797, pp. 696–699.
  • [10] Nazarov D.V., Zemtsova E.G., Solokhin A., Valie, R.Z. and Smirnov, V.M. (2017) “Modification of the surface topography and composition of ultrafine and coarse grained titanium by chemical etching.”, Nanomaterials, 7, 15.
  • [11] Chappuis V., Buser R., Bragger U., Bornstein M.M., Salvi G.E. and Buser D., (2013) “Long-term outcomes of dental implants with a titanium plasma-sprayed surface: A 20-year prospective case series study in partially edentulous patients.” Clin. Implant Dent. Relat. Res., 15, pp. 780–790.
  • [12] Lee W.F., Yang T.S., Wu Y.C. and Peng P.W., (2013) “Nanoporous biocompatible layer on Ti–6Al–4V alloys enhanced osteoblast-like cell response.” J. Exp. Clin. Med., 5, pp. 92–96.
  • [13] Mura D.M., Dini G., Lanzetta M. and 0 Rossi, A., (2018) “An experimental analysis of laser machining for dental implants.” Procedia CIRP, 67, pp. 356–361.
  • [14] Braga F.J.C., Marques R.F., de A Filho E. and Guastaldi, A.C., (2007) “Surface modification of Ti dental implants by Nd: YVO4 laser irradiation.”, Appl. Surf. Sci., 253, pp. 9203–9208.
  • [15] Xue W., Krishna V.B., Bandyopadhyay A. and Bose, S., (2007) “Processing and biocompatibility evaluation of laser processed porous titanium”., Acta Biomater., 3, pp. 1007–1018.
  • [16] Ciganovic J., Stasic J., Gakovic B., Momcilovic M., Milovanovic D., Bokorov M. and Trtica M., (2012) “Surface modification of the titanium implant using TEA CO2 laser pulses in controllable gas atmospheres—Comparative study.” Appl. Surf. Sci., 258, pp. 2741–2748.
  • [17] Rodriguez G.P, Herranz G. and Romero A., (2013) “Solar gas nitriding of Ti6Al4V alloy”, Applied Surface Science, Vol. 283, pp. 445-452
  • [18] Jiang S., Huang L.J., An Q., Geng L., Wang X.J. and Wang S., (2018) “Study on titanium-magnesium composites with bicontinuous structure fabricated by powder metallurgy and ultrasonic infiltration.”, J. Mech. Behav. Biomed. Mater., 81, pp. 10–15.
  • [19] Balog M., Snajdar M., Krizik P., Schauperl Y., Stanec Y. and Catic A., “Titanium-Magnesium Composite for Dental Implants (BIACOM).” In TMS 2017 146th Annual Meeting & Exhibition Supplemental Proceedings The Minerals, Metals & Materials Series Springer: Cham, Switzerland, 2017 p. 271–284.
  • [20] Balog M., Ibrahim H.M.A., Krizik P., Bajanaa O., Klimova A., Catic A. and Schauperl Z., (2019) “Bioactive Ti + Mg composites fabricated by powder metallurgy: The relation between the microstructure and mechanical properties.” J. Mech. Behav. Biomed. Mater., 90, pp. 45–53.
  • [21] Bandyopadhyay A., Dittrick S., Gualtieri T., Wu J. and Bose, S., (2016) “Calcium phosphate–titanium composites for articulating surfaces of load-bearing implants.”, J.Mech. Behav. Biomed. Mater., 57, pp. 280–288.
  • [22] Gemelli E., Jesus J., Camargo N.H.A., Soares G.A., Henriques V.A.R. and Nery F. , (2012) “Microstructural study of a titanium-based biocomposite produced by the powder metallurgy process with TiH2 and nanometric -TCP powders.”, Mater. Sci. Eng. C, 32, pp.1011–1015.
  • [23] Karanjai M., Sundaresan R., Rao G.V.N. and Tallapragada, R.M.R., (2007) “Development of titanium based biocomposite by powder metallurgy processing with in situ forming of Ca–P phases.” Mater. Sci. Eng. A, 447, pp.19–26.
  • [24] Han C., Wang Q., Song B., Li W., Wei Q., Wen S., Liu J. and Shi Y., (2017) “Microstructure and property evolutions of titanium/nano-hydroxyapatite composites in-situ prepared by selective laser melting.” J. Mech. Behav. Biomed. Mater., 71, pp. 85–94.
  • [25] Miranda G., Araújo A., Bartolomeu F., Buciumeanu M., Carvalho O., Souya J.C.M,. Silva F.S. and Henriques B., (2019) “Design of Ti6Al4V-HA composites produced by hot pressing for biomedical applications.”, Mater. Des., 108, pp. 488–493.
  • [26] Alshammari Y., Yang F. and Bolzoni L., (2019) “Mechanical properties and microstructure of Ti-Mn alloys produced via powder metallurgy for biomedical applications.”, J. Mech. Behav. Biomed. Mater., 91, pp.391–397.
  • [27] Gain K.A., Zhang L. and Quadir Z.M., (2016) “Composites matching the properties of human cortical bones: The design of porous titanium-zirconia (Ti-ZrO2) nanocomposites using polymethyl methacrylate powders.” Mater. Sci. Eng. A, 662, pp. 258–267.
  • [28] Li Y., Munir S.K., Lin J. and Wen C., (2016) “Titanium-niobium pentoxide composites for biomedical applications” Bioact. Mater., 1, pp. 127–131.
  • [29] Shahali H,. Jaggessar A. and Yarlagadda P.K., (2017) “Recent advances in manufacturing and surface modification of titanium orthopaedic applications.” Procedia Eng., 174, pp.1067–1076.
  • [30] Asri R.I.M., Harun W.S.W., Samykano M., Lah N.A.C., Ghani S.A.C,. Tarlochan F. and Raza M.R., (2017) “Corrosion and surface modification on biocompatible metals: A review.” Mater. Sci. Eng. A, 77, pp. 1261–1274.
  • [31] Alla K.R., Ginjupalli K., Upadhya N., Shammas M., Ravi R.K. and Sekhar R., (2011) “Surface roughness of implants: A review.” Trends Biomater. Artif. Organs, 25, pp.112–118.
  • [32] Ma, Q., Francis, H. and Sam, F. (2015) Titanium Powder Metallurgy, Butterworth-Heinemann: Boston, MA, USA
  • [33] Balog M., Viskic J., Krizik P., Schauperl Z., Snajdar M., Stanec Z. and Catic, A., (2016) “CP Ti fabricated by low temperature extrusion of HDH powder: Application in dentistry.” Key Eng. Mater., 704, pp. 351-359.
  • [34] Ibrahim A.M.H., Takacova M., Jelenska L., Csaderova L., Balog M., Kopacek J., Eliska S. and Krizik P., (2021) “The effect of surface modification of TiMg composite on the in-vitro degradation response, cell survival, adhesion, and proliferation”, Materials Science and Engineering: C, Vol. 127, , 112259.
  • [35] Šugár P., Kováčik J., Šugárová J. and Ludrovcová B., (2019) “A Study of Laser Micromachining of PM Processed Ti Compact for Dental Implants Applications.” Materials, 12, 2246.
  • [36] Šugár P., Ludrovcová B., Kováčik J., Sahul M. and Šugárová, J., (2020) “Laser-Based Ablation of Titanium–Graphite Composite for Dental Application.” Materials, 13, 2312.
  • [37] Šugár P., Ludrovcová B., Kalbáčová M.H., Šugárová J., Sahul M. and Kováčik J., (2021) “Laser Surface Modification of Powder Metallurgy-Processed Ti-Graphite Composite Which Can Enhance Cells’ Osteo-Differentiation.” Materials, 14, 6067.
  • [38] Rodríguez J., Cañadas I. and Zarza E., (2013), PSA vertical axis solar furnace SF5, Energy Procedia, 49, p. 1511-1522
  • [39] Scardi P., Tesi B., Bacci T. and Gianoglio C., (1990) “Characterization Of Ion-Nitrided Titanium Layers By Means Of X-Ray Microdiffractometry”, Surface and Coatings Technology, Vol. 41, pp. 83 – 91

Surface treatment of Ti and Ti composites using concentrating solar power and laser

Year 2023, Volume: 7 Issue: 2, 63 - 69, 20.06.2023
https://doi.org/10.26701/ems.1206422

Abstract

Titanium and its composites are widely used in implants of bones and teeth. Besides mechanical properties also surface characteristics are very important in these biomaterials. Very important are properties such as surface topography, roughness, chemistry, and surface energy, wettability, and Ti oxides or Ti nitride layers thickness. The concentrated solar power was used successfully to nitride Ti Grade 2 and powder metallurgical Ti prepared from hydrogenated dehydrogenated Ti powder. The nitriding experiments were performed under nitrogen atmosphere at different temperatures and time in SF40 (40kW horizontal solar furnace) at PSA, Spain. Concentrated solar energy has been shown to be an economical alternative to conventional gas nitriding techniques in electric furnaces, CVD, PVD, plasma nitriding, or laser treatments. It has been observed that the solar process represents a significant reduction of the heating time to several minutes (up to 5 minutes at temperature range 500-1000 °C), a clean and non-polluting high-temperature process. The formation of continuous and homogeneous surface layers of TiN, Ti2N and their mixture according to the nitriding temperature was investigated using X-ray diffraction and electron microscopy. Laser surface treatment is of great significance in modifying surface morphology and surface and near-surface region microstructures. Effects of lase treatment parameters on machined surface morphology, surface roughness and chemistry are analyzed in this study and discussed from the point of view of application in dental implantology. The current advances of our research group in application of laser-treated powder metallurgy prepared Ti-based materials are analyzed and discussed.

References

  • [1] Cui Ch., Hu B., Zhao L., and Liu S., (2011) “Titanium alloy production technology, market prospects and industry development”, Materials & Design, 32(3), pp.1684-1691
  • [2] Selvan J. S., Subramania, K., Nath A.K. et al., (1998) “Hardness, microstructure and surface characterization of laser gas nitrided commercially pure titanium using high power CO2 laser,” J. of Mater. Eng and Perform, 7(5), pp. 647-655.
  • [3] Banerjee D. and Williams J.C., (2013) “Perspectives on titanium science and technology”, Acta Mater. 61, pp. 844–879.
  • [4] Babuska, V., Palan J., Kolaja D., Kulda V., Duchek M., Cerny J. and Hrusak D. (2018) “Proliferation of Osteoblasts on Laser-Modified Nanostructured Titanium Surfaces”, Materials 11, 1827.
  • [5] Ozcan M. and Hammerle C., (2012) “Titanium as a reconstruction and implant material in dentistry: Advantages and. pitfalls.”, Materials 5, pp. 1528–1545.
  • [6] Cordeiro M.J. and Barão, R.A.V., (2017) “Is there scientific evidence favoring the substitution of commercially pure titanium with titanium alloys for the manufacture of dental implants?”, Mater. Sci. Eng. C, 71, pp. 1201–1215.
  • [7] Rupp F., Liang L., Geis-Gerstorfer J., Scheideler L. and Hüttig F., (2018) “Surface characteristics of dental implants: A review.”, Dent. Mater. , 34, pp.40–57.
  • [8] Kurella A. and Dahotre N., (2005) “Review paper: Surface Modification for Bioimplants: The Role of Laser Surface.”, J. Biomater. Appl., 20, pp. 5–50.
  • [9] Lin Y., Huang C.F., Cheng H.C. and Shen, Y.K. (2013) “A modified surface on titanium alloy by micro-blasting process.”, Adv. Mater. Res., 797, pp. 696–699.
  • [10] Nazarov D.V., Zemtsova E.G., Solokhin A., Valie, R.Z. and Smirnov, V.M. (2017) “Modification of the surface topography and composition of ultrafine and coarse grained titanium by chemical etching.”, Nanomaterials, 7, 15.
  • [11] Chappuis V., Buser R., Bragger U., Bornstein M.M., Salvi G.E. and Buser D., (2013) “Long-term outcomes of dental implants with a titanium plasma-sprayed surface: A 20-year prospective case series study in partially edentulous patients.” Clin. Implant Dent. Relat. Res., 15, pp. 780–790.
  • [12] Lee W.F., Yang T.S., Wu Y.C. and Peng P.W., (2013) “Nanoporous biocompatible layer on Ti–6Al–4V alloys enhanced osteoblast-like cell response.” J. Exp. Clin. Med., 5, pp. 92–96.
  • [13] Mura D.M., Dini G., Lanzetta M. and 0 Rossi, A., (2018) “An experimental analysis of laser machining for dental implants.” Procedia CIRP, 67, pp. 356–361.
  • [14] Braga F.J.C., Marques R.F., de A Filho E. and Guastaldi, A.C., (2007) “Surface modification of Ti dental implants by Nd: YVO4 laser irradiation.”, Appl. Surf. Sci., 253, pp. 9203–9208.
  • [15] Xue W., Krishna V.B., Bandyopadhyay A. and Bose, S., (2007) “Processing and biocompatibility evaluation of laser processed porous titanium”., Acta Biomater., 3, pp. 1007–1018.
  • [16] Ciganovic J., Stasic J., Gakovic B., Momcilovic M., Milovanovic D., Bokorov M. and Trtica M., (2012) “Surface modification of the titanium implant using TEA CO2 laser pulses in controllable gas atmospheres—Comparative study.” Appl. Surf. Sci., 258, pp. 2741–2748.
  • [17] Rodriguez G.P, Herranz G. and Romero A., (2013) “Solar gas nitriding of Ti6Al4V alloy”, Applied Surface Science, Vol. 283, pp. 445-452
  • [18] Jiang S., Huang L.J., An Q., Geng L., Wang X.J. and Wang S., (2018) “Study on titanium-magnesium composites with bicontinuous structure fabricated by powder metallurgy and ultrasonic infiltration.”, J. Mech. Behav. Biomed. Mater., 81, pp. 10–15.
  • [19] Balog M., Snajdar M., Krizik P., Schauperl Y., Stanec Y. and Catic A., “Titanium-Magnesium Composite for Dental Implants (BIACOM).” In TMS 2017 146th Annual Meeting & Exhibition Supplemental Proceedings The Minerals, Metals & Materials Series Springer: Cham, Switzerland, 2017 p. 271–284.
  • [20] Balog M., Ibrahim H.M.A., Krizik P., Bajanaa O., Klimova A., Catic A. and Schauperl Z., (2019) “Bioactive Ti + Mg composites fabricated by powder metallurgy: The relation between the microstructure and mechanical properties.” J. Mech. Behav. Biomed. Mater., 90, pp. 45–53.
  • [21] Bandyopadhyay A., Dittrick S., Gualtieri T., Wu J. and Bose, S., (2016) “Calcium phosphate–titanium composites for articulating surfaces of load-bearing implants.”, J.Mech. Behav. Biomed. Mater., 57, pp. 280–288.
  • [22] Gemelli E., Jesus J., Camargo N.H.A., Soares G.A., Henriques V.A.R. and Nery F. , (2012) “Microstructural study of a titanium-based biocomposite produced by the powder metallurgy process with TiH2 and nanometric -TCP powders.”, Mater. Sci. Eng. C, 32, pp.1011–1015.
  • [23] Karanjai M., Sundaresan R., Rao G.V.N. and Tallapragada, R.M.R., (2007) “Development of titanium based biocomposite by powder metallurgy processing with in situ forming of Ca–P phases.” Mater. Sci. Eng. A, 447, pp.19–26.
  • [24] Han C., Wang Q., Song B., Li W., Wei Q., Wen S., Liu J. and Shi Y., (2017) “Microstructure and property evolutions of titanium/nano-hydroxyapatite composites in-situ prepared by selective laser melting.” J. Mech. Behav. Biomed. Mater., 71, pp. 85–94.
  • [25] Miranda G., Araújo A., Bartolomeu F., Buciumeanu M., Carvalho O., Souya J.C.M,. Silva F.S. and Henriques B., (2019) “Design of Ti6Al4V-HA composites produced by hot pressing for biomedical applications.”, Mater. Des., 108, pp. 488–493.
  • [26] Alshammari Y., Yang F. and Bolzoni L., (2019) “Mechanical properties and microstructure of Ti-Mn alloys produced via powder metallurgy for biomedical applications.”, J. Mech. Behav. Biomed. Mater., 91, pp.391–397.
  • [27] Gain K.A., Zhang L. and Quadir Z.M., (2016) “Composites matching the properties of human cortical bones: The design of porous titanium-zirconia (Ti-ZrO2) nanocomposites using polymethyl methacrylate powders.” Mater. Sci. Eng. A, 662, pp. 258–267.
  • [28] Li Y., Munir S.K., Lin J. and Wen C., (2016) “Titanium-niobium pentoxide composites for biomedical applications” Bioact. Mater., 1, pp. 127–131.
  • [29] Shahali H,. Jaggessar A. and Yarlagadda P.K., (2017) “Recent advances in manufacturing and surface modification of titanium orthopaedic applications.” Procedia Eng., 174, pp.1067–1076.
  • [30] Asri R.I.M., Harun W.S.W., Samykano M., Lah N.A.C., Ghani S.A.C,. Tarlochan F. and Raza M.R., (2017) “Corrosion and surface modification on biocompatible metals: A review.” Mater. Sci. Eng. A, 77, pp. 1261–1274.
  • [31] Alla K.R., Ginjupalli K., Upadhya N., Shammas M., Ravi R.K. and Sekhar R., (2011) “Surface roughness of implants: A review.” Trends Biomater. Artif. Organs, 25, pp.112–118.
  • [32] Ma, Q., Francis, H. and Sam, F. (2015) Titanium Powder Metallurgy, Butterworth-Heinemann: Boston, MA, USA
  • [33] Balog M., Viskic J., Krizik P., Schauperl Z., Snajdar M., Stanec Z. and Catic, A., (2016) “CP Ti fabricated by low temperature extrusion of HDH powder: Application in dentistry.” Key Eng. Mater., 704, pp. 351-359.
  • [34] Ibrahim A.M.H., Takacova M., Jelenska L., Csaderova L., Balog M., Kopacek J., Eliska S. and Krizik P., (2021) “The effect of surface modification of TiMg composite on the in-vitro degradation response, cell survival, adhesion, and proliferation”, Materials Science and Engineering: C, Vol. 127, , 112259.
  • [35] Šugár P., Kováčik J., Šugárová J. and Ludrovcová B., (2019) “A Study of Laser Micromachining of PM Processed Ti Compact for Dental Implants Applications.” Materials, 12, 2246.
  • [36] Šugár P., Ludrovcová B., Kováčik J., Sahul M. and Šugárová, J., (2020) “Laser-Based Ablation of Titanium–Graphite Composite for Dental Application.” Materials, 13, 2312.
  • [37] Šugár P., Ludrovcová B., Kalbáčová M.H., Šugárová J., Sahul M. and Kováčik J., (2021) “Laser Surface Modification of Powder Metallurgy-Processed Ti-Graphite Composite Which Can Enhance Cells’ Osteo-Differentiation.” Materials, 14, 6067.
  • [38] Rodríguez J., Cañadas I. and Zarza E., (2013), PSA vertical axis solar furnace SF5, Energy Procedia, 49, p. 1511-1522
  • [39] Scardi P., Tesi B., Bacci T. and Gianoglio C., (1990) “Characterization Of Ion-Nitrided Titanium Layers By Means Of X-Ray Microdiffractometry”, Surface and Coatings Technology, Vol. 41, pp. 83 – 91
There are 39 citations in total.

Details

Primary Language English
Subjects Mechanical Engineering
Journal Section Research Article
Authors

Jaroslav Kováčik 0000-0002-6970-0406

štefan Emmer This is me

José Rodrıguez This is me

Inmaculada Cañadas This is me

Peter šugár This is me

Jana šugárová This is me

Barbora Bočáková This is me

Naďa Beronská This is me

Publication Date June 20, 2023
Acceptance Date March 8, 2023
Published in Issue Year 2023 Volume: 7 Issue: 2

Cite

APA Kováčik, J., Emmer, š., Rodrıguez, J., Cañadas, I., et al. (2023). Surface treatment of Ti and Ti composites using concentrating solar power and laser. European Mechanical Science, 7(2), 63-69. https://doi.org/10.26701/ems.1206422
AMA Kováčik J, Emmer š, Rodrıguez J, Cañadas I, šugár P, šugárová J, Bočáková B, Beronská N. Surface treatment of Ti and Ti composites using concentrating solar power and laser. EMS. June 2023;7(2):63-69. doi:10.26701/ems.1206422
Chicago Kováčik, Jaroslav, štefan Emmer, José Rodrıguez, Inmaculada Cañadas, Peter šugár, Jana šugárová, Barbora Bočáková, and Naďa Beronská. “Surface Treatment of Ti and Ti Composites Using Concentrating Solar Power and Laser”. European Mechanical Science 7, no. 2 (June 2023): 63-69. https://doi.org/10.26701/ems.1206422.
EndNote Kováčik J, Emmer š, Rodrıguez J, Cañadas I, šugár P, šugárová J, Bočáková B, Beronská N (June 1, 2023) Surface treatment of Ti and Ti composites using concentrating solar power and laser. European Mechanical Science 7 2 63–69.
IEEE J. Kováčik, “Surface treatment of Ti and Ti composites using concentrating solar power and laser”, EMS, vol. 7, no. 2, pp. 63–69, 2023, doi: 10.26701/ems.1206422.
ISNAD Kováčik, Jaroslav et al. “Surface Treatment of Ti and Ti Composites Using Concentrating Solar Power and Laser”. European Mechanical Science 7/2 (June 2023), 63-69. https://doi.org/10.26701/ems.1206422.
JAMA Kováčik J, Emmer š, Rodrıguez J, Cañadas I, šugár P, šugárová J, Bočáková B, Beronská N. Surface treatment of Ti and Ti composites using concentrating solar power and laser. EMS. 2023;7:63–69.
MLA Kováčik, Jaroslav et al. “Surface Treatment of Ti and Ti Composites Using Concentrating Solar Power and Laser”. European Mechanical Science, vol. 7, no. 2, 2023, pp. 63-69, doi:10.26701/ems.1206422.
Vancouver Kováčik J, Emmer š, Rodrıguez J, Cañadas I, šugár P, šugárová J, Bočáková B, Beronská N. Surface treatment of Ti and Ti composites using concentrating solar power and laser. EMS. 2023;7(2):63-9.

Dergi TR Dizin'de Taranmaktadır.

Flag Counter