Research Article
BibTex RIS Cite
Year 2025, Volume: 9 Issue: 1, 1 - 7

Abstract

Project Number

VEGA 2/0136/24, COST Action (CA20133)

References

  • Zhao, X., Wang, Y., Chen, X., Yu, X., Li, W., Zhang, S., Meng, X., Zhao, Z. M., Dong, T., Andreson, A., Aiyedun, A., Li, Y., Webb, E., Wu, Z., Kunc, V., Ragauskas, A., Ozcan, S., Hogli, & Zhu. (2023). Sustainable bioplastics derived from renewable natural resources for food packaging. Matter, 6(1), 97-127. https://doi.org/10.1016/j.matt.2022.11.006
  • Rosenboom, J. G., Langer, R., & Traverso, G. (2022). Bioplastics for a circular economy. Nature Reviews Materials, 7, 117-137. https://doi.org/10.1038/s41578-021-00407-8
  • Popa, M. S., Frone, A. N., & Panaitescu, D. M. (2022). Polyhydroxybutyrate blends: A solution for biodegradable packaging? International Journal of Biological Macromolecules, 207, 263-277. https://doi.org/10.1016/j.ijbiomac.2022.02.185
  • Balakrishnan, S., Atayo, A., & Asmatulu, E. (2024). Machine learning applications for electrospun nanofibers: A review. Journal of Materials Science, 59, 14095-15140. https://doi.org/10.1007/s10853-024-09994-7
  • Arrieta, M. P., Perdiguero, M., Fiori, S., Kenny, J. M., & Peponi, L. (2020). Biodegradable electrospun PLA-PHB fibers plasticized with oligomeric lactic acid. Polymer Degradation and Stability, 179, 109226. https://doi.org/10.1016/j.polymdegradstab.2020.109226
  • Arrieta, M. P., Díez García, A., López, D., Fiori, S., & Peponi, L. (2019). Antioxidant bilayers based on PHBV and plasticized electrospun PLA-PHB fibers encapsulating catechin. Nanomaterials, 9(3), 346. https://doi.org/10.3390/nano9030346
  • Aydemir, D., & Gardner, D. J. (2020). Biopolymer blends of polyhydroxybutyrate and polylactic acid reinforced with cellulose nanofibrils. Carbohydrate Polymers, 250, 116867. https://doi.org/10.1016/j.carbpol.2020.116867
  • Musioł, M., Rydz, J., Janeczek, H., Andrzejewski, J., Cristea, M., Musioł, K., Kampik, M., & Kowalczuk, M. (2024). (Bio)degradable biochar composites of PLA/P(3HB-co-4HB) commercial blend for sustainable future—Study on degradation and electrostatic properties. Polymers, 16(16), 2331. https://doi.org/10.3390/polym16162331
  • Selvarajoo, A., Wong, Y. L., Khoo, K. S., Chen, W. H., & Show, P. L. (2022). Biochar production via pyrolysis of citrus peel fruit waste as a potential usage as solid biofuel. Chemosphere, 294, 133671. https://doi.org/10.1016/j.chemosphere.2022.133671
  • Hu, L., Qin, R., Zhou, L., Hua, D., Li, K., & He, X. (2023). Effects of orange peel biochar and cipangopaludina chinensis shell powder on soil organic carbon transformation in citrus orchards. Agronomy, 13(7), 1801. https://doi.org/10.3390/agronomy13071801
  • Andrade, T. S., Vakros, J., Mantzavinos, D., & Lianos, P. (2020). Biochar obtained by carbonization of spent coffee grounds and its applications in the construction of an energy storage device. Chemical Engineering Journal Advances, 4, 100061. https://doi.org/10.1016/j.ceja.2020.100061
  • World Wide Fund for Nature. (Erişim tarihi: 24.11.2024). Fight climate change by preventing food waste. WWF Stories.
  • Opálková Šišková, A., Dvorák, T., Šimonová Baranyaiová, T., Šimon, E., Eckstein Andicsová, A., Švajdlenková, H., Opálek, A., Krížik, P., & Nosko, M. (2020). Simple and eco-friendly route from agro-food waste to water pollutants removal. Materials, 13(23), 5424. https://doi.org/10.3390/ma13235424
  • Maiza, M., Benaniba, M. T., & Massardier-Nageotte, V. (2015). Plasticizing effects of citrate esters on properties of poly(lactic acid). Journal of Polymer Engineering, 36(4), 371-380. https://doi.org/10.1515/polyeng-2015-0140
  • Radu, E. R., Panaitescu, D. M., Nicolae, C. A., Gabor, R. A., Raditoiu, V., Stoian, S., Alexandrescu, E., Frierascu, R., Ioana, C., & Radu, F. (2021). The soil biodegradability of structured composites based on cellulose cardboard and blends of polylactic acid and polyhydroxybutyrate. Journal of Polymers and the Environment, 29, 2310–2320. https://doi.org/10.1007/s10924-020-02017-x
  • Mosnáčková, K., Danko, M., Šišková, A., Falco, L. M., Janigová, I., Chmela, Š., Vanovčanová, Z., Omaníková, L., Chodák, I., & Mosnáček, J. (2017). Complex study of the physical properties of a poly(lactic acid)/poly(3-hydroxybutyrate) blend and its carbon black composite during various outdoor and laboratory aging conditions. RSC Advances, 7(74), 47132-47142. https://doi.org/10.1039/C7RA08869H

Electrospun biopolymer blends of poly(lactic acid) and poly(hydroxybutyrate) reinforced with biochar derived from kitchen waste

Year 2025, Volume: 9 Issue: 1, 1 - 7

Abstract

Biodegradable composites reinforced with natural fillers are exciting alternatives to expensive biodegradable polymers. This study aimed to investigate the effect of kitchen waste–derived biochar on the morphological, chemical, thermal, and mechanical properties of electrospun fibrous mats from a blend of biodegradable polymers poly(lactic acid) and poly(hydroxybutyrate). The electrospun neat PLA/PHB mats and mats with 5, 10, 15, 20, and 30 wt.% content of kitchen waste-derived biochar were produced. The techniques of scanning electron microscopy, Fourier transform infrared spectrometry analysis, thermogravimetric analysis, and different scanning calorimetry and tensile tests were used for the fundamental characterization of the produced electrospun mats. The results indicate that adding biochar to PLA/PHB does not significantly affect the properties of electrospun materials. This may be advantageous for packaging, filtration, or agriculture applications.

Project Number

VEGA 2/0136/24, COST Action (CA20133)

References

  • Zhao, X., Wang, Y., Chen, X., Yu, X., Li, W., Zhang, S., Meng, X., Zhao, Z. M., Dong, T., Andreson, A., Aiyedun, A., Li, Y., Webb, E., Wu, Z., Kunc, V., Ragauskas, A., Ozcan, S., Hogli, & Zhu. (2023). Sustainable bioplastics derived from renewable natural resources for food packaging. Matter, 6(1), 97-127. https://doi.org/10.1016/j.matt.2022.11.006
  • Rosenboom, J. G., Langer, R., & Traverso, G. (2022). Bioplastics for a circular economy. Nature Reviews Materials, 7, 117-137. https://doi.org/10.1038/s41578-021-00407-8
  • Popa, M. S., Frone, A. N., & Panaitescu, D. M. (2022). Polyhydroxybutyrate blends: A solution for biodegradable packaging? International Journal of Biological Macromolecules, 207, 263-277. https://doi.org/10.1016/j.ijbiomac.2022.02.185
  • Balakrishnan, S., Atayo, A., & Asmatulu, E. (2024). Machine learning applications for electrospun nanofibers: A review. Journal of Materials Science, 59, 14095-15140. https://doi.org/10.1007/s10853-024-09994-7
  • Arrieta, M. P., Perdiguero, M., Fiori, S., Kenny, J. M., & Peponi, L. (2020). Biodegradable electrospun PLA-PHB fibers plasticized with oligomeric lactic acid. Polymer Degradation and Stability, 179, 109226. https://doi.org/10.1016/j.polymdegradstab.2020.109226
  • Arrieta, M. P., Díez García, A., López, D., Fiori, S., & Peponi, L. (2019). Antioxidant bilayers based on PHBV and plasticized electrospun PLA-PHB fibers encapsulating catechin. Nanomaterials, 9(3), 346. https://doi.org/10.3390/nano9030346
  • Aydemir, D., & Gardner, D. J. (2020). Biopolymer blends of polyhydroxybutyrate and polylactic acid reinforced with cellulose nanofibrils. Carbohydrate Polymers, 250, 116867. https://doi.org/10.1016/j.carbpol.2020.116867
  • Musioł, M., Rydz, J., Janeczek, H., Andrzejewski, J., Cristea, M., Musioł, K., Kampik, M., & Kowalczuk, M. (2024). (Bio)degradable biochar composites of PLA/P(3HB-co-4HB) commercial blend for sustainable future—Study on degradation and electrostatic properties. Polymers, 16(16), 2331. https://doi.org/10.3390/polym16162331
  • Selvarajoo, A., Wong, Y. L., Khoo, K. S., Chen, W. H., & Show, P. L. (2022). Biochar production via pyrolysis of citrus peel fruit waste as a potential usage as solid biofuel. Chemosphere, 294, 133671. https://doi.org/10.1016/j.chemosphere.2022.133671
  • Hu, L., Qin, R., Zhou, L., Hua, D., Li, K., & He, X. (2023). Effects of orange peel biochar and cipangopaludina chinensis shell powder on soil organic carbon transformation in citrus orchards. Agronomy, 13(7), 1801. https://doi.org/10.3390/agronomy13071801
  • Andrade, T. S., Vakros, J., Mantzavinos, D., & Lianos, P. (2020). Biochar obtained by carbonization of spent coffee grounds and its applications in the construction of an energy storage device. Chemical Engineering Journal Advances, 4, 100061. https://doi.org/10.1016/j.ceja.2020.100061
  • World Wide Fund for Nature. (Erişim tarihi: 24.11.2024). Fight climate change by preventing food waste. WWF Stories.
  • Opálková Šišková, A., Dvorák, T., Šimonová Baranyaiová, T., Šimon, E., Eckstein Andicsová, A., Švajdlenková, H., Opálek, A., Krížik, P., & Nosko, M. (2020). Simple and eco-friendly route from agro-food waste to water pollutants removal. Materials, 13(23), 5424. https://doi.org/10.3390/ma13235424
  • Maiza, M., Benaniba, M. T., & Massardier-Nageotte, V. (2015). Plasticizing effects of citrate esters on properties of poly(lactic acid). Journal of Polymer Engineering, 36(4), 371-380. https://doi.org/10.1515/polyeng-2015-0140
  • Radu, E. R., Panaitescu, D. M., Nicolae, C. A., Gabor, R. A., Raditoiu, V., Stoian, S., Alexandrescu, E., Frierascu, R., Ioana, C., & Radu, F. (2021). The soil biodegradability of structured composites based on cellulose cardboard and blends of polylactic acid and polyhydroxybutyrate. Journal of Polymers and the Environment, 29, 2310–2320. https://doi.org/10.1007/s10924-020-02017-x
  • Mosnáčková, K., Danko, M., Šišková, A., Falco, L. M., Janigová, I., Chmela, Š., Vanovčanová, Z., Omaníková, L., Chodák, I., & Mosnáček, J. (2017). Complex study of the physical properties of a poly(lactic acid)/poly(3-hydroxybutyrate) blend and its carbon black composite during various outdoor and laboratory aging conditions. RSC Advances, 7(74), 47132-47142. https://doi.org/10.1039/C7RA08869H
There are 16 citations in total.

Details

Primary Language English
Subjects Material Design and Behaviors, Nanomaterials
Journal Section Research Article
Authors

Alena Opálková šišková This is me 0000-0003-4582-9114

Tomas Dvorak This is me 0009-0005-7080-3567

Andrej Opalek This is me 0000-0001-8311-254X

Katarina Mosnackova This is me 0000-0003-1325-7449

Viera Dujnic This is me 0000-0001-8647-7165

Naďa Beronská 0000-0003-1527-922X

Project Number VEGA 2/0136/24, COST Action (CA20133)
Early Pub Date March 4, 2025
Publication Date
Submission Date November 25, 2024
Acceptance Date January 6, 2025
Published in Issue Year 2025 Volume: 9 Issue: 1

Cite

APA Opálková šišková, A., Dvorak, T., Opalek, A., Mosnackova, K., et al. (2025). Electrospun biopolymer blends of poly(lactic acid) and poly(hydroxybutyrate) reinforced with biochar derived from kitchen waste. European Mechanical Science, 9(1), 1-7.

Dergi TR Dizin'de Taranmaktadır.

Flag Counter