Year 2025,
Volume: 9 Issue: 2, 155 - 164, 20.06.2025
Fatih Balıkoğlu
,
Tayfur Kerem Demircioğlu
,
Berkan Hızarcı
,
Mehmet Özer
Project Number
2021/067 and 2022/122
References
- Al-Shamary, A. K. J., Karakuzu, R., & Özdemir, O. (2016). Low-velocity impact response of sandwich composites with different foam core configurations. Journal of Sandwich Structures & Materials, 18(6), 754-768. https://doi.org/10.1177/1099636216653267
- Atas, C., & Potoğlu, U. (2016). The effect of face-sheet thickness on low-velocity impact response of sandwich composites with foam cores. Journal of Sandwich Structures & Materials, 18(2), 215-228. https://doi.org/10.1177/1099636215613775
- Caprino, G., & Teti, R. (1994). Impact and post-impact behavior of foam core sandwich structures. Composite Structures, 29(1), 47-55. https://doi.org/10.1016/0263-8223(94)90035-3
- Harizi, W., Anjoul, J., Santamaría, V. A. A., Aboura, Z., & Briand, V. (2021). Mechanical behavior of carbon-reinforced thermoplastic sandwich composites with several core types during three-point bending tests. Composite Structures, 262, 113590. https://doi.org/10.1016/j.compstruct.2021.113590
- Xie, H., Hou, X., Fang, H., Zhang, S., Wang, Z., He, P., Yu, F. (2024). Flexural behavior evaluation of PET foam core curved sandwich beam: Experimental study and numerical simulation. Construction and Building Materials, 414, 135000. https://doi.org/10.1016/j.conbuildmat.2024.135000
- Usta, F., Türkmen, H. S., & Scarpa, F. (2022). High-velocity impact resistance of doubly curved sandwich panels with re-entrant honeycomb and foam core. International Journal of Impact Engineering, 165, 104230. https://doi.org/10.1016/j.ijimpeng.2022.104230
- Seifoori, S., Parrany, A. M., & Mirzarahmani, S. (2021). Impact damage detection in CFRP and GFRP curved composite laminates subjected to low-velocity impacts. Composite Structures, 261, 113278. https://doi.org/10.1016/j.compstruct.2020.113278
- Usta, F., Mullaoglu, F., Türkmen, H. S., Balkan, D., Mecitoglu, Z., Kurtaran, H., & Akay, E. (2016). Effects of thickness and curvature on impact behaviour of composite panels. Procedia engineering, 167, 216-222. https://doi.org/10.1016/j.proeng.2016.11.690
- Usta, F., Türkmen, H. S., & Scarpa, F. (2019). Toroidal Sandwich Panels with Auxetic Core Under Impact Loads: Numerical Simulations. In 2019 9th International Conference on Recent Advances in Space Technologies (RAST), 25-28. https://doi.org/10.1109/RAST.2019.8767843
- Arachchige, B., & Ghasemnejad, H. (2017). Post impact analysis of damaged variable-stiffness curved composite plates. Composite Structures, 166, 12-21. https://doi.org/10.1016/j.compstruct.2017.01.018
- Reis, P. N., Coelho, C. A., & Navalho, F. V. (2021). Impact response of composite sandwich cylindrical shells. Applied Sciences, 11(22), 10958. https://doi.org/10.3390/app112210958
- Albayrak, M., Kaman, M. O., & Bozkurt, I. (2023). Experimental and numerical investigation of the geometrical effect on low velocity impact behavior for curved composites with a rubber interlayer. Applied Composite Materials, 30(2), 507-538. https://doi.org/10.1007/s10443-022-10094-5
- Zhang, Y., & Zhou, Y. (2023). Investigation of bird-strike resistance of composite sandwich curved plates with lattice/foam cores. Thin-Walled Structures, 182, 110203. https://doi.org/10.1016/j.tws.2022.110203
- Arachchige, B., & Ghasemnejad, H. (2018). Effect of variable core stiffness on the impact response of curved sandwich plates. Composite Structures, 200, 565-578. https://doi.org/10.1016/j.compstruct.2018.05.150
- Baba, B. O. (2017). Curved sandwich composites with layer-wise graded cores under impact loads. Composite Structures, 159, 1-11. https://doi.org/10.1016/j.compstruct.2016.09.054
- Baba, B. O. (2013). Impact response of sandwich beams with various curvatures and debonds. Journal of Sandwich Structures & Materials, 15(2), 137-155.
https://doi.org/10.1177/1099636212460543
- Yurddaskal, M., & Baba, B. O. (2016). The effect of curvature on the impact response of foam-based sandwich composite panels. Steel and Composite Structure, 20(5), 983-997. https://doi.org/10.12989/scs.2016.20.5.983
- Liu, C., Ma, C., & Gao, X. (2023). Study on impact behavior of glass fiber/PVC curved sandwich structure composites. Polymer Composites, 44(1), 365-376. https://doi.org/10.1002/pc.27102
- Airex Processing Guidelines. (accessed date: 12 March 2025). https://www.3accorematerials.com/uploads/documents/AIREX-Processing-Guidelines_09.2020.pdf
- Dost Kimya, (accessed date: 12 March 2025). https://www.dostkimya.com/tr/urunler/kompozit-malzemeler/cam-fiber-kumaslar, https://www.dostkimya.com/tr/urunler/kompozit-malzemeler/karbon-fiber-kumaslar
- Yao, Y., Zhu, D., Zhang, H., Li, G., & Mobasher, B. (2016). Tensile behaviors of basalt, carbon, glass, and aramid fabrics under various strain rates. Journal of Materials in Civil Engineering, 28(9), 04016081. https://doi.org/10.1061/(ASCE)MT.1943-5533.0001587
- Karahan, M., & Karahan, N. (2014). Effect of weaving structure and hybridization on the low-velocity impact behavior of woven carbon-epoxy composites. Fibres & Textiles in Eastern Europe, 105(3), 109-115.
- Al-Shamary, A. K. J., Abed, A. R. N., & Karakuzu, R. (2024). A comparative study on ballistic impact behaviors of glass/epoxy composites. Mechanics of Advanced Materials and Structures, 31(30), 13341-13350. https://doi.org/10.1080/15376494.2023.2256003
- Hosur, M. V., Adbullah, M., & Jeelani, S. (2005). Studies on the low-velocity impact response of woven hybrid composites. Composite Structures, 67(3), 253-262. https://doi.org/10.1016/j.compstruct.2004.07.024
- Vasudevan, A., Senthil Kumaran, S., Naresh, K., & Velmurugan, R. (2020). Layer-wise damage prediction in carbon/Kevlar/S-glass/E-glass fibre reinforced epoxy hybrid composites under low-velocity impact loading using advanced 3D computed tomography. International Journal of Crashworthiness, 25(1), 9-23. https://doi.org/10.1080/13588265.2018.1511234
- Atas, C., & Sevim, C. (2010). On the impact response of sandwich composites with cores of balsa wood and PVC foam. Composite Structures, 93(1), 40-48. https://doi.org/10.1016/j.compstruct.2010.06.018
- Saylık, A., & Temiz, Ş. (2022). Low-speed impact behavior of fiber-reinforced polymer-based glass, carbon, and glass/carbon hybrid composites. Materials Testing, 64(6), 820-831. https://doi.org/10.1515/mt-2021-2179
- Enfedaque, A., Molina-Aldareguía, J. M., Gálvez, F., González, C., & Llorca, J. (2010). Effect of glass fiber hybridization on the behavior under impact of woven carbon fiber/epoxy laminates. Journal of composite materials, 44(25), 3051-3068. https://doi.org/10.1177/002199831036960
Low velocity impact responses of symmetric and asymmetric curved foam core sandwich panels
Year 2025,
Volume: 9 Issue: 2, 155 - 164, 20.06.2025
Fatih Balıkoğlu
,
Tayfur Kerem Demircioğlu
,
Berkan Hızarcı
,
Mehmet Özer
Abstract
This work aims to experimentally examine the effects of various fibre reinforcements and curvature on the low-speed impact load responses of curved sandwich composites. Plain woven E-glass, S-glass, carbon fibre and twill woven carbon fibre reinforcements with the same areal weight were used as face sheets and PVC foam as core material in the fabrication of sandwich composites. A low-speed impact testing apparatus including a hemispherical impactor was used to conduct low-speed impact tests at various energy levels. Impact energy levels were determined for rebound, penetration, and total perforation of the specimens. Twill woven carbon exhibited superior performance for low-velocity impact damage resistance and tolerance in comparison with plain woven carbon and glass fibres. The absorbed impact energy decreased with the asymmetrical arrangement, and the sandwich specimens with twill-woven face sheets showed the best performance among the symmetrical and asymmetrical panels.
Ethical Statement
All the authors mentioned in the manuscript have agreed for authorship, read and approved the manuscript, and given consent for submission and subsequent publication of the manuscript. All the authors accepts the ethical responsibilities that fit the PUBLICATION ETHICS.
Supporting Institution
Balıkesir University Office of Scientific Research Projects (Türkiye)
Project Number
2021/067 and 2022/122
References
- Al-Shamary, A. K. J., Karakuzu, R., & Özdemir, O. (2016). Low-velocity impact response of sandwich composites with different foam core configurations. Journal of Sandwich Structures & Materials, 18(6), 754-768. https://doi.org/10.1177/1099636216653267
- Atas, C., & Potoğlu, U. (2016). The effect of face-sheet thickness on low-velocity impact response of sandwich composites with foam cores. Journal of Sandwich Structures & Materials, 18(2), 215-228. https://doi.org/10.1177/1099636215613775
- Caprino, G., & Teti, R. (1994). Impact and post-impact behavior of foam core sandwich structures. Composite Structures, 29(1), 47-55. https://doi.org/10.1016/0263-8223(94)90035-3
- Harizi, W., Anjoul, J., Santamaría, V. A. A., Aboura, Z., & Briand, V. (2021). Mechanical behavior of carbon-reinforced thermoplastic sandwich composites with several core types during three-point bending tests. Composite Structures, 262, 113590. https://doi.org/10.1016/j.compstruct.2021.113590
- Xie, H., Hou, X., Fang, H., Zhang, S., Wang, Z., He, P., Yu, F. (2024). Flexural behavior evaluation of PET foam core curved sandwich beam: Experimental study and numerical simulation. Construction and Building Materials, 414, 135000. https://doi.org/10.1016/j.conbuildmat.2024.135000
- Usta, F., Türkmen, H. S., & Scarpa, F. (2022). High-velocity impact resistance of doubly curved sandwich panels with re-entrant honeycomb and foam core. International Journal of Impact Engineering, 165, 104230. https://doi.org/10.1016/j.ijimpeng.2022.104230
- Seifoori, S., Parrany, A. M., & Mirzarahmani, S. (2021). Impact damage detection in CFRP and GFRP curved composite laminates subjected to low-velocity impacts. Composite Structures, 261, 113278. https://doi.org/10.1016/j.compstruct.2020.113278
- Usta, F., Mullaoglu, F., Türkmen, H. S., Balkan, D., Mecitoglu, Z., Kurtaran, H., & Akay, E. (2016). Effects of thickness and curvature on impact behaviour of composite panels. Procedia engineering, 167, 216-222. https://doi.org/10.1016/j.proeng.2016.11.690
- Usta, F., Türkmen, H. S., & Scarpa, F. (2019). Toroidal Sandwich Panels with Auxetic Core Under Impact Loads: Numerical Simulations. In 2019 9th International Conference on Recent Advances in Space Technologies (RAST), 25-28. https://doi.org/10.1109/RAST.2019.8767843
- Arachchige, B., & Ghasemnejad, H. (2017). Post impact analysis of damaged variable-stiffness curved composite plates. Composite Structures, 166, 12-21. https://doi.org/10.1016/j.compstruct.2017.01.018
- Reis, P. N., Coelho, C. A., & Navalho, F. V. (2021). Impact response of composite sandwich cylindrical shells. Applied Sciences, 11(22), 10958. https://doi.org/10.3390/app112210958
- Albayrak, M., Kaman, M. O., & Bozkurt, I. (2023). Experimental and numerical investigation of the geometrical effect on low velocity impact behavior for curved composites with a rubber interlayer. Applied Composite Materials, 30(2), 507-538. https://doi.org/10.1007/s10443-022-10094-5
- Zhang, Y., & Zhou, Y. (2023). Investigation of bird-strike resistance of composite sandwich curved plates with lattice/foam cores. Thin-Walled Structures, 182, 110203. https://doi.org/10.1016/j.tws.2022.110203
- Arachchige, B., & Ghasemnejad, H. (2018). Effect of variable core stiffness on the impact response of curved sandwich plates. Composite Structures, 200, 565-578. https://doi.org/10.1016/j.compstruct.2018.05.150
- Baba, B. O. (2017). Curved sandwich composites with layer-wise graded cores under impact loads. Composite Structures, 159, 1-11. https://doi.org/10.1016/j.compstruct.2016.09.054
- Baba, B. O. (2013). Impact response of sandwich beams with various curvatures and debonds. Journal of Sandwich Structures & Materials, 15(2), 137-155.
https://doi.org/10.1177/1099636212460543
- Yurddaskal, M., & Baba, B. O. (2016). The effect of curvature on the impact response of foam-based sandwich composite panels. Steel and Composite Structure, 20(5), 983-997. https://doi.org/10.12989/scs.2016.20.5.983
- Liu, C., Ma, C., & Gao, X. (2023). Study on impact behavior of glass fiber/PVC curved sandwich structure composites. Polymer Composites, 44(1), 365-376. https://doi.org/10.1002/pc.27102
- Airex Processing Guidelines. (accessed date: 12 March 2025). https://www.3accorematerials.com/uploads/documents/AIREX-Processing-Guidelines_09.2020.pdf
- Dost Kimya, (accessed date: 12 March 2025). https://www.dostkimya.com/tr/urunler/kompozit-malzemeler/cam-fiber-kumaslar, https://www.dostkimya.com/tr/urunler/kompozit-malzemeler/karbon-fiber-kumaslar
- Yao, Y., Zhu, D., Zhang, H., Li, G., & Mobasher, B. (2016). Tensile behaviors of basalt, carbon, glass, and aramid fabrics under various strain rates. Journal of Materials in Civil Engineering, 28(9), 04016081. https://doi.org/10.1061/(ASCE)MT.1943-5533.0001587
- Karahan, M., & Karahan, N. (2014). Effect of weaving structure and hybridization on the low-velocity impact behavior of woven carbon-epoxy composites. Fibres & Textiles in Eastern Europe, 105(3), 109-115.
- Al-Shamary, A. K. J., Abed, A. R. N., & Karakuzu, R. (2024). A comparative study on ballistic impact behaviors of glass/epoxy composites. Mechanics of Advanced Materials and Structures, 31(30), 13341-13350. https://doi.org/10.1080/15376494.2023.2256003
- Hosur, M. V., Adbullah, M., & Jeelani, S. (2005). Studies on the low-velocity impact response of woven hybrid composites. Composite Structures, 67(3), 253-262. https://doi.org/10.1016/j.compstruct.2004.07.024
- Vasudevan, A., Senthil Kumaran, S., Naresh, K., & Velmurugan, R. (2020). Layer-wise damage prediction in carbon/Kevlar/S-glass/E-glass fibre reinforced epoxy hybrid composites under low-velocity impact loading using advanced 3D computed tomography. International Journal of Crashworthiness, 25(1), 9-23. https://doi.org/10.1080/13588265.2018.1511234
- Atas, C., & Sevim, C. (2010). On the impact response of sandwich composites with cores of balsa wood and PVC foam. Composite Structures, 93(1), 40-48. https://doi.org/10.1016/j.compstruct.2010.06.018
- Saylık, A., & Temiz, Ş. (2022). Low-speed impact behavior of fiber-reinforced polymer-based glass, carbon, and glass/carbon hybrid composites. Materials Testing, 64(6), 820-831. https://doi.org/10.1515/mt-2021-2179
- Enfedaque, A., Molina-Aldareguía, J. M., Gálvez, F., González, C., & Llorca, J. (2010). Effect of glass fiber hybridization on the behavior under impact of woven carbon fiber/epoxy laminates. Journal of composite materials, 44(25), 3051-3068. https://doi.org/10.1177/002199831036960