Research Article
BibTex RIS Cite
Year 2025, Volume: 9 Issue: 2, 177 - 188, 20.06.2025
https://doi.org/10.26701/ems.1698103

Abstract

References

  • Karabaş, O. ve Cesur İ. (2023). Farklı Motor Yağlarının Sürtünme ve Aşınma Özelliklerinin Karşılaştırmalı İncelenmesi, All Sciences Proceedings, 203.
  • Wu, Y. Y., Tsui, W. C., ve Liu, T.C. (2007). Experimental analysis of tribological properties of lubricating oils with nanoparticle additives. Wear, 262(7–8), 819–825.
  • Voevodin, A. A., & Zabinski, J. S. (2005). Nanocomposite and nanostructured tribological materials for space applications. Composites Science and Technology, 65(5), 741–748.
  • Musil, J. (2000). Hard and superhard nanocomposite coatings. Surface and Coatings Technology, 125(1–3), 322–330.
  • Rudnick, L. R. (2005). Synthetics, Mineral Oils, and Bio-Based Lubricants: Chemistry and Technology. CRS Press.
  • Soydan, Y., & Ulukan, L. (2013). Temel Triboloji: Sürtünme, Aşınma, Yağlama Bilimi ve Teknolojisi. Tagem Kopisan Yayınevi.
  • Bhushan, B. (2013). Introduction to Tribology. Wiley.
  • Birleanu, C., Pustan, M., Cioaza, M., Molea, A., Popa, F., & Contiu, G. (2022). Effect of TiO₂ nanoparticles on the tribological properties of lubricating oil: An experimental investigation. Scientific Reports, 12, 5201.
  • Choi, Y., Lee, C., Hwang, Y., Park, M., Lee, J., Choi, C., & Jung, M. (2009). Tribological behavior of copper nanoparticles as additives in oil. Current Applied Physics, 9(2), 124–127.
  • Zhu, Y., Zhang, H., Li, N., & Jiang, Z. (2023). Friction and wear characteristics of Fe₃O₄ nano-additive lubricant in micro-rolling. Lubricants, 11(10), 434.
  • Padgurskas, J., Rukuiza, R., Prosyčevas, I., & Kreivaitis, R. (2013). Tribological properties of lubricant additives of Fe, Cu and Co nanoparticles. Tribology International, 60, 224–232.
  • Yu, R., Liu, J., & Zhou, Y. (2019). Experimental study on tribological property of MoS₂ nanoparticle in castor oil. Journal of Tribology, 141(10), 1.
  • Wu, C., Li, S., Chen, Y., Yao, L., Li, X., & Ni, J. (2023). Tribological properties of chemical composite and physical mixture of ZnO and SiO₂ nanoparticles as grease additives. Applied Surface Science, 612, 155932.
  • Ma, L., Ma, L., Lian, J., Wang, S., Ma, X., & Zhao, J. (2024). Tribological behavior and cold-rolling lubrication performance of water-based nanolubricants with varying concentrations of nano-TiO₂ additives. Lubricants, 12(11), 361.
  • Martin, D. S. (2022). Tribological performance effect of SiO₂ and TiO₂ nanoparticles as lubricating oil additives (pp. 223–231).
  • Liñeira del Río, J. M., Fernandes, C., & Seabra, J. H. O. (2024). Tribological improvement of low-viscosity nanolubricants: MoO₃, MoS₂, WS₂ and WC nanoparticles as additives. Lubricants.
  • Borda, F. L. G., Ribeiro de Oliveira, S. J., Lazaro, L. M. S. M., & Leiróz, A. J. K. (2018). Experimental investigation of the tribological behavior of lubricants with additive containing copper nanoparticles. Tribology International, 117, 52–58.
  • Jafarzadegan, M., Feng, A. H., Abdollah-zadeh, A., Saeid, T., Shen, J., & Assadi, H. (2012). Microstructural characterization in dissimilar friction stir welding between 304 stainless steel and St37 steel. Materials Characterization, 74, 29.
  • Kocaman, R., & Ateş, S. (2023). Al6061 matrisli SiC, Al₂O₃ ve kömür cürufu tozu takviyeli hibrit kompozitlerin sertlik ve aşınma davranışlarının incelenmesi. International Journal of Engineering Research and Development, 15(2), 598–609.
  • Çakır, Ö. F., & Erdem, M. (2025). Investigation of lattice geometries formed by metal powder additive manufacturing for energy absorption: A comparative study on Ti6Al4V, Inconel 718, and AISI 316L. Machines, 13(4), 316.
  • Szabó, Á. I., Tóth, Á. D., Abdallah, H., & Hargitai, H. (2023). Experimental wear analysis of nano-sized titania particles as additives in automotive lubricants. Micro, 3(3), 715–727.
  • Sadeghi, B., Cavaliere, P., Shabani, A., Pruncu, C. I., & Lamberti, L. (2023). Nano-scale wear: A critical review on its measuring methods and parameters affecting nano-tribology. Proceedings of the Institution of Mechanical Engineers, Part J: Journal of Engineering Tribology.
  • Marinescu, I. D., Rowe, W. B., Dimitrov, B., & Inasaki, I. (2004). Tribology of Abrasive Machining Processes. William Andrew Publishing.
  • Kavishwar, S., Bhaiswar, V., Kochhar, S., Fande, A., & Tandon, V. (2024). State-of-the-art titanium carbide hard coatings: A comprehensive review of mechanical and tribological behaviour. Engineering Research Express, 6.
  • Cozza, R. C. (2013). A study on friction coefficient and wear coefficient of coated systems submitted to micro-scale abrasion tests. Surface and Coatings Technology, 215, 224–233.
  • İpekoğlu, G., Küçükömeroğlu, T. D., Sekban, M., & Çam, G. (2018). Sürtünme karıştırma kaynağıyla birleştirilen St37/St52 levhaların mikroyapı karakterizasyonu ve mekanik özellikleri. Dokuz Eylül Üniversitesi Mühendislik Fakültesi Fen ve Mühendislik Dergisi, 20, 471–480.
  • Mallakpour, S., & Barati, A. (2011). Efficient preparation of hybrid nanocomposite coatings based on poly(vinyl alcohol) and silane coupling agent modified TiO₂ nanoparticles. Progress in Organic Coatings, 71(4), 391–398.
  • Hering, N., Schreiber, K., Riedel, R., Lichtenberg, O., & Woltersdorf, J. (2001). Physical deposition of carbon doped titanium nitride film by DC magnetron sputtering for metallic implant coating use. Applied Organometallic Chemistry, 15(11), 879–886.
  • Pareek, S., & Quamara, J. K. (2018). Dielectric and optical properties of graphitic carbon nitride–titanium dioxide nanocomposite with enhanced charge separation. Journal of Materials Science, 53, 604–612.

Investigation of the effects of nanoparticle additive lubricants on the adhesive wear properties of ST37 steel and AISI304

Year 2025, Volume: 9 Issue: 2, 177 - 188, 20.06.2025
https://doi.org/10.26701/ems.1698103

Abstract

In this study, the adhesive wear behavior of different metals lubricated with nanoparticle-modified oils was investigated. Two different metal samples, namely St37 steel and AISI304, were used. As the lubricant, the widely used industrial 10W-40 motor oil was selected and titanium carbide (TiC) and titanium nitride (TiN) nanoparticles were added at concentrations of 1%, 3%, and 5% by weight to improve the tribological properties. The lubricants were homogeneously mixed with the nanoparticles, and the prepared samples were subjected to wear tests using the pin-on-disk method. Tests were conducted under fixed parameters, and subsequently, the worn surfaces were analyzed in detail using SEM, EDS, FTIR, UV spectroscopy and Optical Microscopy techniques. The results demonstrated that the addition of nanoparticles reduced the coefficient of friction and increased wear resistance. Particularly, the addition of 3% TiN and TiC nanoparticles provided lower wear tracks and more homogeneous surface deformation on all metal surfaces. This study presents important findings supporting the potential of nanoparticle-reinforced lubricants to extend the service life and improve the performance of machines in industrial applications.

References

  • Karabaş, O. ve Cesur İ. (2023). Farklı Motor Yağlarının Sürtünme ve Aşınma Özelliklerinin Karşılaştırmalı İncelenmesi, All Sciences Proceedings, 203.
  • Wu, Y. Y., Tsui, W. C., ve Liu, T.C. (2007). Experimental analysis of tribological properties of lubricating oils with nanoparticle additives. Wear, 262(7–8), 819–825.
  • Voevodin, A. A., & Zabinski, J. S. (2005). Nanocomposite and nanostructured tribological materials for space applications. Composites Science and Technology, 65(5), 741–748.
  • Musil, J. (2000). Hard and superhard nanocomposite coatings. Surface and Coatings Technology, 125(1–3), 322–330.
  • Rudnick, L. R. (2005). Synthetics, Mineral Oils, and Bio-Based Lubricants: Chemistry and Technology. CRS Press.
  • Soydan, Y., & Ulukan, L. (2013). Temel Triboloji: Sürtünme, Aşınma, Yağlama Bilimi ve Teknolojisi. Tagem Kopisan Yayınevi.
  • Bhushan, B. (2013). Introduction to Tribology. Wiley.
  • Birleanu, C., Pustan, M., Cioaza, M., Molea, A., Popa, F., & Contiu, G. (2022). Effect of TiO₂ nanoparticles on the tribological properties of lubricating oil: An experimental investigation. Scientific Reports, 12, 5201.
  • Choi, Y., Lee, C., Hwang, Y., Park, M., Lee, J., Choi, C., & Jung, M. (2009). Tribological behavior of copper nanoparticles as additives in oil. Current Applied Physics, 9(2), 124–127.
  • Zhu, Y., Zhang, H., Li, N., & Jiang, Z. (2023). Friction and wear characteristics of Fe₃O₄ nano-additive lubricant in micro-rolling. Lubricants, 11(10), 434.
  • Padgurskas, J., Rukuiza, R., Prosyčevas, I., & Kreivaitis, R. (2013). Tribological properties of lubricant additives of Fe, Cu and Co nanoparticles. Tribology International, 60, 224–232.
  • Yu, R., Liu, J., & Zhou, Y. (2019). Experimental study on tribological property of MoS₂ nanoparticle in castor oil. Journal of Tribology, 141(10), 1.
  • Wu, C., Li, S., Chen, Y., Yao, L., Li, X., & Ni, J. (2023). Tribological properties of chemical composite and physical mixture of ZnO and SiO₂ nanoparticles as grease additives. Applied Surface Science, 612, 155932.
  • Ma, L., Ma, L., Lian, J., Wang, S., Ma, X., & Zhao, J. (2024). Tribological behavior and cold-rolling lubrication performance of water-based nanolubricants with varying concentrations of nano-TiO₂ additives. Lubricants, 12(11), 361.
  • Martin, D. S. (2022). Tribological performance effect of SiO₂ and TiO₂ nanoparticles as lubricating oil additives (pp. 223–231).
  • Liñeira del Río, J. M., Fernandes, C., & Seabra, J. H. O. (2024). Tribological improvement of low-viscosity nanolubricants: MoO₃, MoS₂, WS₂ and WC nanoparticles as additives. Lubricants.
  • Borda, F. L. G., Ribeiro de Oliveira, S. J., Lazaro, L. M. S. M., & Leiróz, A. J. K. (2018). Experimental investigation of the tribological behavior of lubricants with additive containing copper nanoparticles. Tribology International, 117, 52–58.
  • Jafarzadegan, M., Feng, A. H., Abdollah-zadeh, A., Saeid, T., Shen, J., & Assadi, H. (2012). Microstructural characterization in dissimilar friction stir welding between 304 stainless steel and St37 steel. Materials Characterization, 74, 29.
  • Kocaman, R., & Ateş, S. (2023). Al6061 matrisli SiC, Al₂O₃ ve kömür cürufu tozu takviyeli hibrit kompozitlerin sertlik ve aşınma davranışlarının incelenmesi. International Journal of Engineering Research and Development, 15(2), 598–609.
  • Çakır, Ö. F., & Erdem, M. (2025). Investigation of lattice geometries formed by metal powder additive manufacturing for energy absorption: A comparative study on Ti6Al4V, Inconel 718, and AISI 316L. Machines, 13(4), 316.
  • Szabó, Á. I., Tóth, Á. D., Abdallah, H., & Hargitai, H. (2023). Experimental wear analysis of nano-sized titania particles as additives in automotive lubricants. Micro, 3(3), 715–727.
  • Sadeghi, B., Cavaliere, P., Shabani, A., Pruncu, C. I., & Lamberti, L. (2023). Nano-scale wear: A critical review on its measuring methods and parameters affecting nano-tribology. Proceedings of the Institution of Mechanical Engineers, Part J: Journal of Engineering Tribology.
  • Marinescu, I. D., Rowe, W. B., Dimitrov, B., & Inasaki, I. (2004). Tribology of Abrasive Machining Processes. William Andrew Publishing.
  • Kavishwar, S., Bhaiswar, V., Kochhar, S., Fande, A., & Tandon, V. (2024). State-of-the-art titanium carbide hard coatings: A comprehensive review of mechanical and tribological behaviour. Engineering Research Express, 6.
  • Cozza, R. C. (2013). A study on friction coefficient and wear coefficient of coated systems submitted to micro-scale abrasion tests. Surface and Coatings Technology, 215, 224–233.
  • İpekoğlu, G., Küçükömeroğlu, T. D., Sekban, M., & Çam, G. (2018). Sürtünme karıştırma kaynağıyla birleştirilen St37/St52 levhaların mikroyapı karakterizasyonu ve mekanik özellikleri. Dokuz Eylül Üniversitesi Mühendislik Fakültesi Fen ve Mühendislik Dergisi, 20, 471–480.
  • Mallakpour, S., & Barati, A. (2011). Efficient preparation of hybrid nanocomposite coatings based on poly(vinyl alcohol) and silane coupling agent modified TiO₂ nanoparticles. Progress in Organic Coatings, 71(4), 391–398.
  • Hering, N., Schreiber, K., Riedel, R., Lichtenberg, O., & Woltersdorf, J. (2001). Physical deposition of carbon doped titanium nitride film by DC magnetron sputtering for metallic implant coating use. Applied Organometallic Chemistry, 15(11), 879–886.
  • Pareek, S., & Quamara, J. K. (2018). Dielectric and optical properties of graphitic carbon nitride–titanium dioxide nanocomposite with enhanced charge separation. Journal of Materials Science, 53, 604–612.
There are 29 citations in total.

Details

Primary Language English
Subjects Tribology, Nanomaterials, Nanoscale Characterisation
Journal Section Research Article
Authors

Cemile Eylem Urhan 0000-0002-3836-9087

Kadir Gündoğan 0000-0001-6742-3110

Atike İnce Yardımcı 0000-0001-5482-4230

Early Pub Date June 4, 2025
Publication Date June 20, 2025
Submission Date May 12, 2025
Acceptance Date June 4, 2025
Published in Issue Year 2025 Volume: 9 Issue: 2

Cite

APA Urhan, C. E., Gündoğan, K., & İnce Yardımcı, A. (2025). Investigation of the effects of nanoparticle additive lubricants on the adhesive wear properties of ST37 steel and AISI304. European Mechanical Science, 9(2), 177-188. https://doi.org/10.26701/ems.1698103

Dergi TR Dizin'de Taranmaktadır.

Flag Counter