Research Article
BibTex RIS Cite

Effect of prior deformation on microstructural evolution and retained austenite stability in bainite–martensite structures of continuously cooled low-carbon steel

Year 2025, Volume: 9 Issue: 3, 291 - 301, 20.09.2025
https://doi.org/10.26701/ems.1726120

Abstract

This study investigates the effects of prior deformation and continuous cooling rate on microstructure and retained austenite stability in low-carbon bainite/martensite steel. Continuous cooling was applied to laboratory-scaled specimens at cooling rates of 1–8 °C/s under deformed and undeformed conditions. The results demonstrated that under undeformed conditions, increasing the cooling rate led to a progressive transformation from bainite to martensite. At 8 °C/s cooling rate, a fully martensitic microstructure was achieved whereas lower rates yielded mixed bainitic–martensitic structures. Deformation in austenite region significantly accelerated transformation kinetics, as evidenced by a leftward shift in the deformation-modified continuous cooling transformation diagram. The deformed specimen cooled at 4 °C/s exhibited nearly similar microstructural features and hardness values with the undeformed specimen cooled at 2 °C/s. In undeformed conditions, retained austenite volume fraction increased with cooling rate. However, deformation prior to cooling substantially reduced retained austenite content, despite identical thermal histories. The findings highlight the importance of controlling both deformation and cooling on tailoring final microstructures and mechanical properties without the need for additional heat-treatments. The results provide an insight into optimizing energy-efficient and low-emission forging processes aimed at improving uniformity in components with varying cross-sections.

Ethical Statement

Not applicable.

Project Number

222M041

References

  • Raabe, D., Matic Jovičević-Klug, Ponge, D., Gramlich, A., Silva, Grundy, A. N., Springer, H., Filho, I. S., & Ma, Y. (2024). Circular Steel for Fast Decarbonization: Thermodynamics, Kinetics, and Microstructure Behind Upcycling Scrap into High-Performance Sheet Steel. Annual Review of Materials Research, 54(1), 247–297. https://doi.org/10.1146/annurev-matsci-080222-123648
  • Kumar, R. S., Kumar, T. P., Daniel, S., Gugapriyan, R., & Shamanth, S. (2024). A review on sustainable manufacturing through green techniques. AIP Conference Proceedings, 3232, 020014. https://doi.org/10.1063/5.0235892
  • Gramlich, A., Helbig, C., Schmidt, M., & Hagedorn, W. (2024). A comprehensive design approach to increase the performance of steels under minimal costs and environmental impacts. Sustainable Materials and Technologies, 41, e01040–e01040. https://doi.org/10.1016/j.susmat.2024.e01040
  • Sun, C., Wang, J., Zhou, M., Hong, L., Ai, L., & Wen, L. (2024). Process Path for Reducing Carbon Emissions from Steel Industry—Combined Electrification and Hydrogen Reduction. Processes, 12(1), 108–108. https://doi.org/10.3390/pr12010108
  • Holappa, L. (2020). A General Vision for Reduction of Energy Consumption and CO2 Emissions from the Steel Industry. Metals, 10(9), 1117. https://doi.org/10.3390/met10091117
  • Hagedorn, W., Gramlich, A., Greiff, K., & Krupp, U. (2022). Alloy and process design of forging steels for better environmental performance. Sustainable Materials and Technologies, 34, e00509–e00509. https://doi.org/10.1016/j.susmat.2022.e00509
  • Alan, E., Ayhan, İ. İ., Ögel, B., & Uzunsoy, D. (2024). A comparative assessment of artificial neural network and regression models to predict mechanical properties of continuously cooled low carbon steels: an external data analysis approach. Journal of Innovative Engineering and Natural Science, 4(2), 495–513. https://doi.org/10.61112/jiens.1445518
  • Mandal, G., Dey, I., Mukherjee, S., & Ghosh, S. K. (2022). Phase transformation and mechanical properties of ultrahigh strength steels under continuous cooling conditions. Journal of Materials Research and Technology, 19, 628–642. https://doi.org/10.1016/j.jmrt.2022.05.033
  • Gramlich, A., T. Schmiedl, S. Schönborn, Melz, T., & Bleck, W. (2020). Development of air-hardening martensitic forging steels. Materials Science and Engineering A, 784, 139321–139321. https://doi.org/10.1016/j.msea.2020.139321
  • Furkan Yılmaz Küçükakarsu, İsmail İrfan Ayhan, Alan, E., Demet Taştemür, & Süleyman Gündüz. (2022). Effect of hot rolling process parameters on the microstructure and mechanical properties of continuously cooled low-carbon high-strength low-alloy (HSLA) steel. Materials Testing, 64(8), 1136–1149. https://doi.org/10.1515/mt-2021-2220
  • Kawulok, R., Schindler, I., Kawulok, P., Rusz, S., Opěla, P., Kliber, J., Solowski, Z., Čmiel, K. M., Podolínský, P., Mališ, M. & Vašek, Z. (2016). Transformation kinetics of selected steel grades after plastic Deformation, Metalurgija, 55(3), pp.357-360. https://doi.org/10.13140/RG.2.1.1401.0001
  • Grajcar, A., & Opiela, M. (2008). Influence of plastic deformation on CCT- diagrams of low-carbon and medium- carbon TRIP-steels Manufacturing and processing. Journal of Achievements in Materials and Manufacturing Engineering A.
  • Abdulkareem, N. M. & Jabbar, M. A. (2017). Effect of Retained Austenite on the Micro-structure and Mechanical Properties of AI-SI4340 High Strength Low Alloy Steel (HSLA steel) Using Magnetic Saturation Measurement and x-ray Diffraction methods, Basrah Journal for Engineering Sciences, 17(2). https://doi.org/0.33971/bjes.17.2.1
  • ‌Kim, K.-W., Kim, K. I., Lee, C.-H., Kang, J.-Y., Lee, T.-H., Cho, K.-M., & Oh, K. H. (2016). Control of retained austenite morphology through double bainitic transformation. Materials Science and Engineering A, 673, 557–561. https://doi.org/10.1016/j.msea.2016.07.083
  • Garcia-Mateo, C., & Caballero, F. G. (2005). The role of retained austenite on tensile properties of steels with bainitic microstructures. Materials Transactions, 46(8), 1839–1846. https://doi.org/10.2320/matertrans.46.1839
  • Kang, M., Park, M., Kim, B., Kim, H. C., Jeon, J. B., Kim, H., … Kim, B. J. (2021). Effect of Heat Treatment on Microstructure and Mechanical Properties of High-Strength Steel for in Hot Forging Products. Metals, 11(5), 768–768. https://doi.org/10.3390/met11050768
  • Khodabandeh, A. R., Jahazi, M., Yue, S., & Aghdashi, S. T. (2006). The Determination of Optimum Forging Conditions for the Production of High Strength-High Impact Toughness Automotive Parts. Materials and Manufacturing Processes, 21(1), 105–110. https://doi.org/10.1080/amp-20060666
  • Sarangi, S. S., Lavakumar, A., Singh, P. K., Katiyar, P. K. & Ray, R. K. (2023). Indentation size effect in steels with different carbon contents and microstructures, Materials Science and Technology, 39(3), 338-346. https://doi.org/10.1080/02670836.2022.2113157
  • Budiarsa, I. N. (2013). Indentation Size Effect (ISE) of Vickers hardness in steels: correlation with H/E, Applied mechanics and materials, 391, 23-28. https://doi.org/10.4028/www.scientific.net/AMM.391.23
  • Kozłowska, A., Grajcar, A., Janik, A., Radwański, K., Krupp, U., Matus, K. & Morawiec, M. (2021). Mechanical and thermal stability of retained austenite in plastically deformed bainite-based TRIP-aided mediumMn steels, Archives of Civil and Mechanical Engineering, 21(3), 133. https://doi.org/10.1007/s43452-021-00284-6
  • De Moor, E., Matlock, D. K., Speer, J. G., & Merwin, M. J. (2011). Austenite stabilization through manganese enrichment. Scripta Materialia, 64(2), 185–188. https://doi.org/10.1016/j.scriptamat.2010.09.040
  • Jimenez-Melero, E., Van Dijk, N. H., Zhao, L., Sietsma, J., Offerman, S. E., Wright, J. P. & Van der Zwaag, S. (2007). Martensitic transformation of individual grains in low-alloyed TRIP steels, Scripta Materialia, 56(5), 421-424. https://doi.org/10.1016/j.scriptamat.2006.10.041
  • Shen, Y. F., Qiu, L. N., Sun, X., Zuo, L., Liaw, P. K. & Raabe, D. (2015). Effects of retained austenite volume fraction, morphology, and carbon content on strength and ductility of nanostructured TRIP-assisted steels, Materials Science and Engineering: A, 636, 551-564. https://doi.org/10.1016/j.msea.2015.04.030
  • Sugimoto, K. I., Misu, M., Kobayashi, M. & Shirasawa, H. (1993). Effects of second phase morphology on retained austenite morphology and tensile properties in a TRIP-aided dual-phase steel sheet, ISIJ international, 33(7), 775-782. https://doi.org/10.2355/isijinternational.33.775
  • Pereloma, E., Gazder, A. & Timokhina, I. (2016). Retained austenite: transformation-induced plasticity. In R. Colas & G. E. Totten (Eds.), Encyclopedia of Iron, Steel, and Their Alloys (pp. 3088-3103). New York: CRC Press https://doi.org/10.1081/E-EISA-120049200
  • Xu, M., Yang, Y. G., Chen, J. Y., Tang, D., Jiang, H. T., & Mi, Z. L. (2017). Effects of strain states on stability of retained austenite in medium Mn steels. Journal of Iron and Steel Research International, 24(11), 1125-1130. https://doi.org/10.1016/S1006-706X(17)30163-2
  • Yamashita, T., Koga, N., & Umezawa, O. (2018). Influence of deformability of retained austenite on martensitic transformation in tension for low alloy steel at low temperatures. ISIJ International, 58(6), 1155-1161. https://doi.org/10.2355/isijinternational.ISIJINT-2018-033
  • Timokhina, I. B., Hodgson, P. D., & Pereloma, E. V. (2004). Effect of microstructure on the stability of retained austenite in transformation-induced-plasticity steels. Metallurgical and Materials Transactions A, 35(8), 2331–2341. https://doi.org/10.1007/s11661-006-0213-9
  • Grajcar, A., Radwański, K., Kilarski, A. & Swadźba, R. (2014) Microstructural Features of Strain-Induced Martensitic Transformation in Medium-Mn Steels with Metastable Retained Austenite. Archives of Metallurgy and Materials, 59(4), 1673–1678, https://doi:10.2478/amm-2014-0283
  • Bhadeshia, H. K. D. H. (2001) “Bainite in steels: transformation, microstructure and properties.” London: IOM, 237-276.
  • Bhadeshia, H. K. D. H. & Honeycombe, R. W. K. (2017) Steels: microstructure and properties. Butterworth-Heinemann.
  • Lawrynowicz, Z. (2002). Carbon partitioning during bainite transformation in low alloy steels. Materials Science and Technology, 18(11), 1322-1324.
  • Porter, D. A., & Easterling, K. E. (2009). Phase transformations in metals and alloys (revised reprint). CRC press.
  • Ghosh, G., & Olson, G. B. (2001). Computational thermodynamics and the kinetics of martensitic transformation. Journal of Phase Equilibria, 22(3), 199-207.
  • Jo, H. H., Kim, K. W., Park, H., Moon, J., Kim, Y. W., Shim, H. B., & Lee, C. H. (2023). Estimation of cooling rate of high-strength thick plate steel during water quenching based on a dilatometric experiment. Materials, 16(13), 4792.
  • Bordereau, V. (2015). Quantitative relationships between chemical composition, microstructure and mechanical properties for bainitic steels (Doctoral dissertation, Ecole Nationale Supérieure des Mines de Paris).
  • Bhadeshia, H. K. D. H. (2015). Bainite in steels: Theory and practice (3rd ed.). CRC Press.
  • Christian, J. W., & Mahajan, S. (1995). Deformation-induced phase transformations. Materials Science, 39(1–2), 1–157. https://doi.org/10.1016/0079-6425(94)00002-W
  • Lee, S. J., Kim, Y. W., & Kim, Y. G. (2006). Effect of prior deformation on austenite grain refinement and phase transformation in steels. Metallurgical and Materials Transactions A, 37A(9), 2859–2867. https://doi.org/10.1007/s11661-006-0118-x
There are 39 citations in total.

Details

Primary Language English
Subjects Material Design and Behaviors, Automotive Engineering Materials, Optimization in Manufacturing
Journal Section Research Article
Authors

Emre Alan 0000-0002-1894-0231

Project Number 222M041
Publication Date September 20, 2025
Submission Date June 24, 2025
Acceptance Date August 18, 2025
Published in Issue Year 2025 Volume: 9 Issue: 3

Cite

APA Alan, E. (2025). Effect of prior deformation on microstructural evolution and retained austenite stability in bainite–martensite structures of continuously cooled low-carbon steel. European Mechanical Science, 9(3), 291-301. https://doi.org/10.26701/ems.1726120

Dergi TR Dizin'de Taranmaktadır.

Flag Counter