Review Article
BibTex RIS Cite

Performance Optimization of Compression Ignition Engines: A Review

Year 2022, Volume: 2 Issue: 2, 21 - 27, 30.06.2022
https://doi.org/10.29228/eng.pers.63291

Abstract

A catalyzing factor for the continuous search to optimize the compression ignition engines is the impact it has on the environment. The compression ignition engines find applications in the transportation sector, agriculture, energy, and construction sectors, and the optimization of its performance will thus not be an effort in futility. Many studies have focused on the optimization of the performance of compression ignition engines. The ones of interest reviewed herein can be broadly categorized as combustion chamber geometry studies, fuel studies, and advanced combustion modes studies. The combustion chamber geometry poses an impact on the in-cylinder fluid motion. This influences the combustion process which in-turn affects the engine performance and emission characteristics. The fuel type is also an influencer of the engine performance and emission characteristics drawing its impact from its properties. The combustion mode also poses an impact on the combustion process and can influence the engine performance and its emission characteristics. While it is difficult to pinpoint a particular intervention means that can completely resolve the challenges created by the use of ignition compression engines, the combustion chamber geometry optimization tends to bring along emission reduction and efficiency boost. A combination of the different methods will however, make a huge impact.

References

  • 1. Serrano, J. R. (2017). Imagining the Future of the Internal Com-bustion Engine for Ground Transport in the Current Context. Ap-plied Sciences, 7(10), 1-5.
  • 2. Towoju, O. A. (2021). Fuels for Automobile: The Sustainable Future. Journal of Energy Research and Reviews, 7(3), 8-13.
  • 3. Towoju, O. A., Jekayinfa, S. O. (2019). Compression Ignition Engine Performance as A Function of the Fuel Properties. Journal of Engineering Sciences, 6(1): G1-G5. DOI: 10.21272/jes.2019.6(1).g1
  • 4. Towoju, O. A., Dare, A. A. Impact of Conical Piston Crown Equipped Compression Ignition Engine on Performance. Europe-an Journal of Engineering and Technology. 2018;6(1):13-25.
  • 5. Wang N., Tang L., Zhang W., and Guo J. How to Face the Chal-lenges Caused by the Abolishment of Subsidies for Electric Vehi-cles in China? Energy 166: 359–72, 2019. Retrieved from the World Wide Web: http://dx.doi.org/10.1016/j.energy.2018.10.006.
  • 6. Towoju, O. A., Ishola, F. A. A Case for The Internal Combustion Engine Powered Vehicle. Energy Reports. 2020; 6:315-321. DOI..org/10.1016/j.egyr.2019.11.082.
  • 7. Towoju, O. A. Carbon Footprint Reduction with the Adoption of the Electricity-Powered Vehicles. International Energy Journal (IEJ). 2021;21(1A):101-106.
  • 8. Banapurmath, R., et al. (2014). Performance, Emission Character-istics of Dual Fuel (DF) & Homogeneous Charge Compression Ignition (HCCI) Engines Operated on Compressed Natural Gas (CNG) – Uppage Oil Methylester (UOME). Universal Journal of Renewable Energy, 2, 32-44.
  • 9. Towoju, O. A., Dare, A. A. Frustum Cone Piston Crown Equipped Compression Ignition Engine Performance Characteris-tics. American Journal of Engineering Research (AJER), 7(3), 2018, 317-330.
  • 10. Mondal, P. K., Mandal, B. K. A comparative study on the per-formance and emissions from a CI engine fueled with water emulsified diesel prepared by mechanical homogenization and ul-trasonic dispersion method. Energy Reports. 2019; 5:639-648. Available: https://doi.org/10.1016/j.egyr.2019.05.006.
  • 11. Towoju, O. A., Dare, A. A., Fashogbon, S. K. Experimental in-vestigation of the performance and emission characteristics of a CI engine equipped with a modified truncated cone piston crown operated on diesel and shea-butter biodiesel. European Journal of Engineering Research and Science. 2018;3(10):126-131. DOI: http://dx.doi.org/10.24018/ejers.2018.3.10.954.
  • 12. Yessian, S., Varthanan, P. A. Optimization of Performance and Emission Characteristics of Catalytic Coated IC Engine with Bio-diesel Using Grey-Taguchi Method. Scientific Reports, (2020) 10:2129. https://doi.org/10.1038/s41598-019-57129-9
  • 13. Jafarmadar, S., and Khanbabazadeh, M. (2008). A Computational Study of the Effects of Combustion Chamber Geometries on Combustion Process and Emission in a DI Diesel Engine. Journal of Fuel and Combustion, 1(1), 1-16.
  • 14. Mamilla, V. R., Mallikarjun, M., Rao, G. N. (2013). Effect of Combustion Chamber Design on a DI Diesel Engine Fuelled with Jatropha Methyl Esters Blends with Diesel. International Confer-ence On DESIGN AND MANUFACTURING, IConDM 2013 (479-490). India: Elsevier Ltd.
  • 15. Indrodia, A., Chotai, N., and Ramani, B. (2014). Investigation of Different Combustion Chamber Geometry on Diesel Engine using CFD Modelling of In-cylinder Flow for Improving the Perfor-mance of Engine. 5th International & 26th All India Manufactur-ing Technology, Design and Research Conference (AIMTDR 2014), (489-1 - 489-6). Assam.
  • 16. Nataraj, K., Banapurmath, N., Manavendra, G. Y., Vaibhav, K., Satish, G. (2015). Effect of Combustion Chamber Shapes on the Performance of Mahua and Neem Biodiesel Operated Diesel En-gines. Petroleum & Environmental Biotechnology, 6(4), 1-7.
  • 17. Reddy, C. S., Reddy, C. E., and Reddy, K. H. (2012). Effect of Tangential Grooves on Piston Crown of D.I. Diesel Engine with Blends of Cotton Seed Oil Methyl Easter. IJRRAS, 13(1), 150-159.
  • 18. Ranganatha, S. L., Chandrashekar, T., Banapurmath, N., Nashipudi, P. (2014). Effect of Injection Timing, Combustion Chamber Shapes and Nozzle Geometry on the Diesel Engine Per-formance. Universal Journal of Petroleum Sciences, 2, 74-95.
  • 19. Jaichandar, S., Annamalai, K. (2012). Effects of open combus-tion chamber geometries on the performance of pongamia bio-diesel in a DI diesel engine. Fuel, 98, 272-279.
  • 20. Jaichander, S., and Annamalai, K. (2012). Performance and Ex-haust Emission Analysis on Pongamia Biodiesel with Different Open Combustion Chambers in a DI Diesel Engine. Journal of Scientific and Industrial Research, 71, 487-491.
  • 21. Saito T., Daisho U.N., Ikeya N. Effects of combustion chamber geometry on diesel combustion, Society of Automotive Engineers, Paper No.: 1986 861186 (1986).
  • 22. Bharathi, V. V., and Prasanthi, G. (2013). The Influence of Air Swirl on Combustion and Emissions in a Diesel Engine. Interna-tional Journal of Research in Mechanical Engineering and Tech-nology, 3(2), 14-16.
  • 23. Parvaneh, Z., Ali, A. Z., and Barat, G. (2017). Comparative As-sessment of Performance and Emission Characteristics of Castor, Coconut and Waste Cooking based Biodiesel as fuel in a Diesel Engine. Energy, 139, 883-894.
  • 24. Zelimir, D., Blaz, V., Stanislaw, P., and Breda, K. (2009). Influ-ence of Fuel Properties on Engine Characteristics and Tribology Parameters. Goriva I Maziva, 48(2), 131-158.
  • 25. Anbarasu, A., & Karthikeyan, A. (2014). Performance and Emis-sion Characteristics of Direct Injection Diesel Engine Running On Canola Oil / Diesel Fuel Blend. American Journal of Engineering Research, Vol. 3(8), pp. 202–207.
  • 26. Al-Dawody, M. F., & Bhatti, S. (2014). Effect of Variable Com-pression Ratio on the Combustion, Performance and Emission Pa-rameters of a Diesel Engine Fuelled with Diesel and Soybean Bi-odiesel Blending. World Applied Sciences Journal, pp. 1852–1858.
  • 27. Towoju, O. A. and Dare, A. Di-Methyl Ether as a Substitute for Diesel Fuel in Compression Ignition Engines. International Jour-nal of Advanced Research in Engineering and Management. Vol. 2(5), pp. 39 – 47, 2016.
  • 28. Bakhtyari, A., Rahimpour, M. R. Chapter 10 – Methanol to Dimethyl Ether. Science and Engineering, pp. 288-311, 2018. https://doi.org/10.1016/B978-0-444-63903-5.00010-8.
  • 29. Can, O., Ozturk, E., and Yusesu, H. S. Combustion and exhaust emissions of canola biodiesel blends in a single cylinder DI diesel engine. Renewable Energy, 109(2):73-82, 2017. https://doi.org/10.1016/j.renene.2017.03.017.
  • 30. Ge, J. C., Yoon, S. K., and Choi, N. J. Using Canola Oil Biodiesel as an Alternative Fuel in Diesel Engines: A Review. Appl. Sci. 2017, 7, 881, pp. 1-19. doi:10.3390/app7090881.
  • 31. Krishna Murthy, K. S. S. and Kotebavi, V. M. Study on per-formance and emission characteristics of CI engine fueled with canola oil - Diesel blends. AIP Conference Proceedings 2200, 020049 (2019); https://doi.org/10.1063/1.5141219.
  • 32. Anbarasu, A., and Karthikeyan, A. Diesel engine performance and emission evaluation using Canola biodiesel emulsion fuel. Australian Journal of Mechanical Engineering, 14(3), 174-181, 2016.
  • 33. Anandan, M., Sampath, S., and Sudharsan, N. M. (2014). Effect of Compression Ratio and Exhaust Gas Recirculation (EGR) on Combustion, Emission and Performance of DI Diesel Engine with Biodiesel Blends. Global Journal of Researches in Engineering: A Mechanical and Mechanics Engineering, 14(7), 1-16.
  • 34. Anandan, M., Sampath, S., and Sudharsan, N. M. (2014). Study of Combustion and Performance Characteristics on a Single Cyl-inder DI Diesel Engine with Jatropha and Pongamia Methyl Ester Blends. Global Journal of Researches in Engineering: A Mechan-ical and Mechanics Engineering, 14(7), 26-40.
  • 35. Patil, A. R., Desai, A. D., Madavi, A. D., Kamble, S. A. Na-vale, S. B., Dhutmal, V. U. Comparative study on Effect of Biodiesel on CI Engine Performance and Emission Char-acteristics. Materialstoday: Proceedings, 5(2), Part 1, 2018, Pages 3556-3562. https://doi.org/10.1016/j.matpr.2017.11.604.
  • 36. Periyasamy, M., and Vadivel, N. (2015). Experimental Investiga-tion On LPG-Biodiesel (Pongamia) Dual Fueled Engine. Interna-tional Journal on Applications in Mechanical and Production En-gineering, 1(3), 3-7.
  • 37. Agarwal, A., Soni, S. L., Sharma, D. K., and Bhaskar, S. K. (2015). Effect of Variation of Compression Ratio and Injection Pressure on the Performance and Emission Characteristics of CI Engine using various Alternative Fuels: A Review. IJRET: Inter-national Journal of Research in Engineering and Technology, 4(1), 40-45.
  • 38. Arunprasad, S., Iyer, H. J., Omkaar, K., Jayaganth, M., and Palani, K. Performance and Emission Characteristics of C.I Engine using Jatropha and Pongamia Mixed Biodiesel. IOP Conf. Series: Mate-rials Science and Engineering 954 (2020) 012029, pp. 1-9, doi:10.1088/1757-899X/954/1/012029.
  • 39. Gopal, K. N. and Karupparaj, R. T. Effect of pongamia bio-diesel on emission and combustion characteristics of DI compression ignition engine. Ain Shams Engineering Journal, 6(1), pp. 297-305, 2015. https://doi.org/10.1016/j.asej.2014.10.001
  • 40. Anand, A., Nithyananda, B. S., and Naveen Prakash, G. V. Per-formance Analysis of Pongamia Biodiesel as an Alternative Fuel for CI Engine. Applied Mechanics and Materials, 895, pp. 139-143, 2019. https://doi.org/10.4028/www.scientific.net/AMM.895.139.
  • 41. Yaqoob, H.; Teoh, Y.H.; Sher, F.; Farooq, M.U.; Jamil, M.A.; Kausar, Z.; Sabah, N.U.; Shah, M.F.; Rehman, H.Z.U.; Rehman, A.U. Potential of Waste Cooking Oil Biodiesel as Renewable Fuel in Combustion Engines: A Review. Energies, 2021, 14, 2565, pp. 1-20. https:// doi.org/10.3390/en14092565
  • 42. Guo, J., Peltier, E., Carter, R. E., Krejci, A. J., Stagg-Williams, S. M., and Depcik, C. Waste Cooking Oil Biodiesel Use in Two Off-Road Diesel Engines. International Scholarly Research Notices, 2012, 130782 | https://doi.org/10.5402/2012/130782.
  • 43. Chiatti, G., Chiavola, O., and Recco, E. Effect of Waste Cooking Oil Biodiesel Blends on Performance and Emissions from a CRDI Diesel Engine, Improvement Trends for Internal Combustion En-gines, IntechOpen, DOI: 10.5772/intechopen.69740.
  • 44. Das, A. and Ghatak, M. D. An experimental study on Perfor-mance of CI engine fueled with waste cooking oil. IOP Conf. Se-ries: Materials Science and Engineering 377 (2018) 012199, pp. 1-7. doi:10.1088/1757-899X/377/1/012199.
  • 45. Patel, R. L. and Sankhavara,C. D. Biodiesel production from Karanja oil and its use in diesel engine: A review. Renewable and Sustainable Energy Reviews, 71, 2017, pp. 464-474. https://doi.org/10.1016/j.rser.2016.12.075.
  • 46. Harne, M. and Pelagade, M. Performance Evaluation of CI En-gine using Karanja Biodiesel as an Alternative Fuel. IJSRST 3(6), pp. 302-308, 2017.
  • 47. Nagesh, S. N. Combustion, performance and emission character-istics of karanja blended biodiesel in CI engine: effect of CR. J. Phys.: Conf. Ser. 1276 012068, 2019.
  • 48. Pandey, K. P. and Amit, I. P. Performance of a CI Engine using Karanja Biodiesel Blend: A Review. International Research Jour-nal of Engineering and Technology (IRJET), 5(10), pp. 1904-1907, 2018.
  • 49. SenthilKumar, R., Prabu, M., and Sukumar, M. Performance, Emission and Combustion Characteristics of a CI engine Using Karanja oil Methyl Ester as a biodiesel with Tyre Pyrolysis Blends. International Journal of Engineering Science and Innovative Technology (IJESIT), 3(4), pp. 837-849, 2014.
  • 50. Das, D., Kumar, A., and Yadav, A. Evaluation of perfor-mance, emission and combustion characteristics of a CI engine fueled with karanja biodiesel and diethyl ether blends, Biofuels, 9(1), pp. 89-94, 2018. DOI: 10.1080/17597269.2016.1257318
  • 51. Gad, M. S., El-Araby, R., Abed, K. A., El-Ibiari, N. N., El Morsi, A. K., and El-Diwani, G. I. Performance and emissions character-istics of C.I. engine fueled with palm oil/palm oil methyl ester blended with diesel fuel, Egyptian Journal of Petroleum, 27(2), pp. 215-219, 2018. https://doi.org/10.1016/j.ejpe.2017.05.009.
  • 52. Nahian, Md. R., Islam, Md. N., and Khan, S. Production of Bio-diesel from Palm Oil and Performance Test with Diesel in CI En-gine. International Conference on Mechanical, Industrial and En-ergy Engineering 2016, ICMIEE-PI-160160-2
  • 53. Kumar, A. N., Kishore, P. S., Raju, K. B., Kasianantham, N., and Bragadeshwaran, A. Engine parameter optimization of palm oil biodiesel as alternate fuel in CI engine. Environ Sci Pollut Res 26, 6652–6676 (2019). https://doi.org/10.1007/s11356-018-04084-z
  • 54. Sivakrishna, T., Madhu, S., and Sivakumar, K. The effect of palm biodiesel fuel on the performance of automotive four stroke diesel engine. IOP Conf. Series: Materials Science and Engineer-ing, 574 (2019) 012015, pp. 1-7.
  • 55. Gupta, R. Performance Analysis of a Diesel Engine using the Soybean Oil based Biodiesel. Indian Journal of Science and Technology, 9(36), pp. 1-6, 2016. DOI: 10.17485/ijst/2016/v9i36/102153.
  • 56. Hira, A. and Das, D. Performance and emission evaluation of diesel engine fuelled with biodiesel produced from high free fatty acid crude soyabean oil, Biofuels, 7(4), pp. 413-421, 2016. DOI: 10.1080/17597269.2016.1147920
  • 57. Azad A.K., Rasul M.G., Giannangelo B., Ahmed S.F. (2018) Diesel Engine Performance and Emission Study Using Soybean Biodiesel Blends with Fossil Diesel. In: Aloui F., Dincer I. (eds) Exergy for A Better Environment and Improved Sustainability, 2, pp. 137-155, 2018. Green Energy and Technology. Springer, Cham. https://doi.org/10.1007/978-3-319-62575-1_10
  • 58. Rathi A. and Kaushal R. Experimental Study of a Diesel Engine Using Soybean-Based Biodiesel and Diesel Blends. In: Gupta A., Mongia H., Chandna P., Sachdeva G. (eds) Advances in IC En-gines and Combustion Technology. NCICEC 2019, 2021. Lecture Notes in Mechanical Engineering. Springer, Singapore. https://doi.org/10.1007/978-981-15-5996-9_26
  • 59. Ilves, R., Kuut A. and Olt, J. (2019). Chapter 8 – Ethanol as In-ternal Combustion Engine Fuel. Ethanol, 215-225. https://doi.org/10.1016/B978-0-12-811458-2.00008-0
  • 60. Mayank C. J., Mayank J., Sumit S., and Anurag B. (2016). Alco-hol as an Alternative Fuel in I.C. Engine: A Review, International Journal of Engineering and Technical Research (IJETR), 4(2), 2454-4698.
  • 61. Bayetero, C. M., Yépez, C. M., Cevallos, I. B., and Rueda, E. H. (2022). Effect of the use of additives in biodiesel blends on the performance and opacity of a diesel engine, Materials Today: Proceedings, 49(1), pp. 93-99, https://doi.org/10.1016/j.matpr.2021.07.478.
  • 62. Jyothi, U. S., Gopinath, L., and Shankarachary, B. (2019). Effect of oxygenated and metal-based additives on performance, com-bustion and emission characteristics of Mahua bio-diesel at opti-mal blend, AIP Conference Proceedings 2200, 020029; https://doi.org/10.1063/1.5141199
  • 63. Madiwale, S., Karthikeyan, A., and Bhojwani, V. (2017). A Comprehensive Review of Effect of Biodiesel Additives on Properties, Performance, and Emission, IOP Conf. Ser.: Mater. Sci. Eng. 197 012015
  • 64. Kumar, R. N., Sekhar, Y., and Adinarayana, S. (2013). Effects of Compression Ratio and EGR on Performance, Combustion and Emissions of Di Injection Diesel Engine. International Journal of Applied Science and Engineering, 11(1), 41-49.
  • 65. Prasad, G. R., Goud, S. C., and Meheswar, D. (2012). Alternative Fuels for HCCI engine technology and recent developments. In-ternational Journal of Advanced Research in Engineering and Applied Science, 1(2), 1-19.
  • 66. Dec, J. E. (2009). Advanced Compression- Engines - understand-ing the in-cylinder process. The Combustion Institute, 32, 2727-2742.
  • 67. Charalambides, A. G. (2013). Homogenous Charge Compression Ignition (HCCI) Engines. In Advances in Internal Combustion Engines and Fuel Technologies (pp. 119-148). Cyprus: Intech.
  • 68. Himmatsinh, R. C., Syham, K. D., Preksha, K., and Vivek, G. T. (2015). A Technical Review of HCCI Combustion in Diesel en-gine. IJIRST-International Journal for Innovative Research in Sci-ence & Technology, 1(10), 28-31.
  • 69. Venkatesan, M., Moorthi, N. S., Franco, P. A., Manivannan, A., and Karthikeyan, R. (2015). Hydrous Methanol Fuelled HCCI Engine. Mechanics and Mechanical Engineering, 19(1), 31-49.
  • 70. Shehata, M., and Razek, A. S. (2008). Engine Performance Pa-rameters. Engineering Research Journal, 120, M32-M57.
  • 71. Sorathia, H. S., Rahhod, P. P., and Sorathiya, A. S. (2012). "Ef-fects of Exhaust Gas Recirculation (EGR) on NOx Emission on C.I. Engine" - A Review Study. International Journal of Ad-vanced Engineering Research and Studies, 1(3), 223-227.
  • 72. Baškovič, U. Z., Vihar, R., Oprešnik, S. R., Seljak, T., and Kat-rašnik, T. (2022). RCCI combustion with renewable fuel mix – Tailoring operating parameters to minimize exhaust emissions, Fuel, 311(1), pp. 1-13. https://doi.org/10.1016/j.fuel.2021.122590.
  • 73. Daiha, I. B., Said, M. A., Abdul Karim, Z. A., and Firmansyah, F. (2018). Strategies and methods of RCCI combustion: A review, AIP Conference Proceedings 2035, 030006 (2018); https://doi.org/10.1063/1.5075562
  • 74. Firmansyah, A. A., Heikal, M. R., Abidin, E. Z., and Panchatcha-ram, N. (2018). Reactivity Controlled Compression Ignition (RCCI) of Gasoline- CNG Mixtures, Intechopen- Improvement Trends for Internal Combustion Engines, DOI: 10.5772/intechopen.72880
  • 75. Alemayehu, G., Firew, D., Nallamothu, R.B., Kang, S.K. (2021). PCCI Combustion for Better Emissions in Diesel Engines. In: Jha, K., Gulati, P., Tripathi, U.K. (eds) Recent Advances in Sustaina-ble Technologies. Lecture Notes in Mechanical Engineering. Springer, Singapore. https://doi.org/10.1007/978-981-16-0976-3_17
  • 76. Singh, A. P., Jain, A., and Agarwal, A. K. (2017). Fuel-Injection Strategy for PCCI Engine Fueled by Mineral Diesel and Biodiesel Blends. Energy Fuels, 31(8), pp. 8594–8607. https://doi.org/10.1021/acs.energyfuels.6b03393.
  • 77. Zhao, Y., Weibo E, Niu, T., and He, J. (2021). Study on Combus-tion Processes of a Premixed Charge Compression Ignition (PCCI) Engine Fueled with DME/Diesel, Journal of Physics: Con-ference Series 1732 (2021) 012154. doi:10.1088/1742-6596/1732/1/012154.

Year 2022, Volume: 2 Issue: 2, 21 - 27, 30.06.2022
https://doi.org/10.29228/eng.pers.63291

Abstract

References

  • 1. Serrano, J. R. (2017). Imagining the Future of the Internal Com-bustion Engine for Ground Transport in the Current Context. Ap-plied Sciences, 7(10), 1-5.
  • 2. Towoju, O. A. (2021). Fuels for Automobile: The Sustainable Future. Journal of Energy Research and Reviews, 7(3), 8-13.
  • 3. Towoju, O. A., Jekayinfa, S. O. (2019). Compression Ignition Engine Performance as A Function of the Fuel Properties. Journal of Engineering Sciences, 6(1): G1-G5. DOI: 10.21272/jes.2019.6(1).g1
  • 4. Towoju, O. A., Dare, A. A. Impact of Conical Piston Crown Equipped Compression Ignition Engine on Performance. Europe-an Journal of Engineering and Technology. 2018;6(1):13-25.
  • 5. Wang N., Tang L., Zhang W., and Guo J. How to Face the Chal-lenges Caused by the Abolishment of Subsidies for Electric Vehi-cles in China? Energy 166: 359–72, 2019. Retrieved from the World Wide Web: http://dx.doi.org/10.1016/j.energy.2018.10.006.
  • 6. Towoju, O. A., Ishola, F. A. A Case for The Internal Combustion Engine Powered Vehicle. Energy Reports. 2020; 6:315-321. DOI..org/10.1016/j.egyr.2019.11.082.
  • 7. Towoju, O. A. Carbon Footprint Reduction with the Adoption of the Electricity-Powered Vehicles. International Energy Journal (IEJ). 2021;21(1A):101-106.
  • 8. Banapurmath, R., et al. (2014). Performance, Emission Character-istics of Dual Fuel (DF) & Homogeneous Charge Compression Ignition (HCCI) Engines Operated on Compressed Natural Gas (CNG) – Uppage Oil Methylester (UOME). Universal Journal of Renewable Energy, 2, 32-44.
  • 9. Towoju, O. A., Dare, A. A. Frustum Cone Piston Crown Equipped Compression Ignition Engine Performance Characteris-tics. American Journal of Engineering Research (AJER), 7(3), 2018, 317-330.
  • 10. Mondal, P. K., Mandal, B. K. A comparative study on the per-formance and emissions from a CI engine fueled with water emulsified diesel prepared by mechanical homogenization and ul-trasonic dispersion method. Energy Reports. 2019; 5:639-648. Available: https://doi.org/10.1016/j.egyr.2019.05.006.
  • 11. Towoju, O. A., Dare, A. A., Fashogbon, S. K. Experimental in-vestigation of the performance and emission characteristics of a CI engine equipped with a modified truncated cone piston crown operated on diesel and shea-butter biodiesel. European Journal of Engineering Research and Science. 2018;3(10):126-131. DOI: http://dx.doi.org/10.24018/ejers.2018.3.10.954.
  • 12. Yessian, S., Varthanan, P. A. Optimization of Performance and Emission Characteristics of Catalytic Coated IC Engine with Bio-diesel Using Grey-Taguchi Method. Scientific Reports, (2020) 10:2129. https://doi.org/10.1038/s41598-019-57129-9
  • 13. Jafarmadar, S., and Khanbabazadeh, M. (2008). A Computational Study of the Effects of Combustion Chamber Geometries on Combustion Process and Emission in a DI Diesel Engine. Journal of Fuel and Combustion, 1(1), 1-16.
  • 14. Mamilla, V. R., Mallikarjun, M., Rao, G. N. (2013). Effect of Combustion Chamber Design on a DI Diesel Engine Fuelled with Jatropha Methyl Esters Blends with Diesel. International Confer-ence On DESIGN AND MANUFACTURING, IConDM 2013 (479-490). India: Elsevier Ltd.
  • 15. Indrodia, A., Chotai, N., and Ramani, B. (2014). Investigation of Different Combustion Chamber Geometry on Diesel Engine using CFD Modelling of In-cylinder Flow for Improving the Perfor-mance of Engine. 5th International & 26th All India Manufactur-ing Technology, Design and Research Conference (AIMTDR 2014), (489-1 - 489-6). Assam.
  • 16. Nataraj, K., Banapurmath, N., Manavendra, G. Y., Vaibhav, K., Satish, G. (2015). Effect of Combustion Chamber Shapes on the Performance of Mahua and Neem Biodiesel Operated Diesel En-gines. Petroleum & Environmental Biotechnology, 6(4), 1-7.
  • 17. Reddy, C. S., Reddy, C. E., and Reddy, K. H. (2012). Effect of Tangential Grooves on Piston Crown of D.I. Diesel Engine with Blends of Cotton Seed Oil Methyl Easter. IJRRAS, 13(1), 150-159.
  • 18. Ranganatha, S. L., Chandrashekar, T., Banapurmath, N., Nashipudi, P. (2014). Effect of Injection Timing, Combustion Chamber Shapes and Nozzle Geometry on the Diesel Engine Per-formance. Universal Journal of Petroleum Sciences, 2, 74-95.
  • 19. Jaichandar, S., Annamalai, K. (2012). Effects of open combus-tion chamber geometries on the performance of pongamia bio-diesel in a DI diesel engine. Fuel, 98, 272-279.
  • 20. Jaichander, S., and Annamalai, K. (2012). Performance and Ex-haust Emission Analysis on Pongamia Biodiesel with Different Open Combustion Chambers in a DI Diesel Engine. Journal of Scientific and Industrial Research, 71, 487-491.
  • 21. Saito T., Daisho U.N., Ikeya N. Effects of combustion chamber geometry on diesel combustion, Society of Automotive Engineers, Paper No.: 1986 861186 (1986).
  • 22. Bharathi, V. V., and Prasanthi, G. (2013). The Influence of Air Swirl on Combustion and Emissions in a Diesel Engine. Interna-tional Journal of Research in Mechanical Engineering and Tech-nology, 3(2), 14-16.
  • 23. Parvaneh, Z., Ali, A. Z., and Barat, G. (2017). Comparative As-sessment of Performance and Emission Characteristics of Castor, Coconut and Waste Cooking based Biodiesel as fuel in a Diesel Engine. Energy, 139, 883-894.
  • 24. Zelimir, D., Blaz, V., Stanislaw, P., and Breda, K. (2009). Influ-ence of Fuel Properties on Engine Characteristics and Tribology Parameters. Goriva I Maziva, 48(2), 131-158.
  • 25. Anbarasu, A., & Karthikeyan, A. (2014). Performance and Emis-sion Characteristics of Direct Injection Diesel Engine Running On Canola Oil / Diesel Fuel Blend. American Journal of Engineering Research, Vol. 3(8), pp. 202–207.
  • 26. Al-Dawody, M. F., & Bhatti, S. (2014). Effect of Variable Com-pression Ratio on the Combustion, Performance and Emission Pa-rameters of a Diesel Engine Fuelled with Diesel and Soybean Bi-odiesel Blending. World Applied Sciences Journal, pp. 1852–1858.
  • 27. Towoju, O. A. and Dare, A. Di-Methyl Ether as a Substitute for Diesel Fuel in Compression Ignition Engines. International Jour-nal of Advanced Research in Engineering and Management. Vol. 2(5), pp. 39 – 47, 2016.
  • 28. Bakhtyari, A., Rahimpour, M. R. Chapter 10 – Methanol to Dimethyl Ether. Science and Engineering, pp. 288-311, 2018. https://doi.org/10.1016/B978-0-444-63903-5.00010-8.
  • 29. Can, O., Ozturk, E., and Yusesu, H. S. Combustion and exhaust emissions of canola biodiesel blends in a single cylinder DI diesel engine. Renewable Energy, 109(2):73-82, 2017. https://doi.org/10.1016/j.renene.2017.03.017.
  • 30. Ge, J. C., Yoon, S. K., and Choi, N. J. Using Canola Oil Biodiesel as an Alternative Fuel in Diesel Engines: A Review. Appl. Sci. 2017, 7, 881, pp. 1-19. doi:10.3390/app7090881.
  • 31. Krishna Murthy, K. S. S. and Kotebavi, V. M. Study on per-formance and emission characteristics of CI engine fueled with canola oil - Diesel blends. AIP Conference Proceedings 2200, 020049 (2019); https://doi.org/10.1063/1.5141219.
  • 32. Anbarasu, A., and Karthikeyan, A. Diesel engine performance and emission evaluation using Canola biodiesel emulsion fuel. Australian Journal of Mechanical Engineering, 14(3), 174-181, 2016.
  • 33. Anandan, M., Sampath, S., and Sudharsan, N. M. (2014). Effect of Compression Ratio and Exhaust Gas Recirculation (EGR) on Combustion, Emission and Performance of DI Diesel Engine with Biodiesel Blends. Global Journal of Researches in Engineering: A Mechanical and Mechanics Engineering, 14(7), 1-16.
  • 34. Anandan, M., Sampath, S., and Sudharsan, N. M. (2014). Study of Combustion and Performance Characteristics on a Single Cyl-inder DI Diesel Engine with Jatropha and Pongamia Methyl Ester Blends. Global Journal of Researches in Engineering: A Mechan-ical and Mechanics Engineering, 14(7), 26-40.
  • 35. Patil, A. R., Desai, A. D., Madavi, A. D., Kamble, S. A. Na-vale, S. B., Dhutmal, V. U. Comparative study on Effect of Biodiesel on CI Engine Performance and Emission Char-acteristics. Materialstoday: Proceedings, 5(2), Part 1, 2018, Pages 3556-3562. https://doi.org/10.1016/j.matpr.2017.11.604.
  • 36. Periyasamy, M., and Vadivel, N. (2015). Experimental Investiga-tion On LPG-Biodiesel (Pongamia) Dual Fueled Engine. Interna-tional Journal on Applications in Mechanical and Production En-gineering, 1(3), 3-7.
  • 37. Agarwal, A., Soni, S. L., Sharma, D. K., and Bhaskar, S. K. (2015). Effect of Variation of Compression Ratio and Injection Pressure on the Performance and Emission Characteristics of CI Engine using various Alternative Fuels: A Review. IJRET: Inter-national Journal of Research in Engineering and Technology, 4(1), 40-45.
  • 38. Arunprasad, S., Iyer, H. J., Omkaar, K., Jayaganth, M., and Palani, K. Performance and Emission Characteristics of C.I Engine using Jatropha and Pongamia Mixed Biodiesel. IOP Conf. Series: Mate-rials Science and Engineering 954 (2020) 012029, pp. 1-9, doi:10.1088/1757-899X/954/1/012029.
  • 39. Gopal, K. N. and Karupparaj, R. T. Effect of pongamia bio-diesel on emission and combustion characteristics of DI compression ignition engine. Ain Shams Engineering Journal, 6(1), pp. 297-305, 2015. https://doi.org/10.1016/j.asej.2014.10.001
  • 40. Anand, A., Nithyananda, B. S., and Naveen Prakash, G. V. Per-formance Analysis of Pongamia Biodiesel as an Alternative Fuel for CI Engine. Applied Mechanics and Materials, 895, pp. 139-143, 2019. https://doi.org/10.4028/www.scientific.net/AMM.895.139.
  • 41. Yaqoob, H.; Teoh, Y.H.; Sher, F.; Farooq, M.U.; Jamil, M.A.; Kausar, Z.; Sabah, N.U.; Shah, M.F.; Rehman, H.Z.U.; Rehman, A.U. Potential of Waste Cooking Oil Biodiesel as Renewable Fuel in Combustion Engines: A Review. Energies, 2021, 14, 2565, pp. 1-20. https:// doi.org/10.3390/en14092565
  • 42. Guo, J., Peltier, E., Carter, R. E., Krejci, A. J., Stagg-Williams, S. M., and Depcik, C. Waste Cooking Oil Biodiesel Use in Two Off-Road Diesel Engines. International Scholarly Research Notices, 2012, 130782 | https://doi.org/10.5402/2012/130782.
  • 43. Chiatti, G., Chiavola, O., and Recco, E. Effect of Waste Cooking Oil Biodiesel Blends on Performance and Emissions from a CRDI Diesel Engine, Improvement Trends for Internal Combustion En-gines, IntechOpen, DOI: 10.5772/intechopen.69740.
  • 44. Das, A. and Ghatak, M. D. An experimental study on Perfor-mance of CI engine fueled with waste cooking oil. IOP Conf. Se-ries: Materials Science and Engineering 377 (2018) 012199, pp. 1-7. doi:10.1088/1757-899X/377/1/012199.
  • 45. Patel, R. L. and Sankhavara,C. D. Biodiesel production from Karanja oil and its use in diesel engine: A review. Renewable and Sustainable Energy Reviews, 71, 2017, pp. 464-474. https://doi.org/10.1016/j.rser.2016.12.075.
  • 46. Harne, M. and Pelagade, M. Performance Evaluation of CI En-gine using Karanja Biodiesel as an Alternative Fuel. IJSRST 3(6), pp. 302-308, 2017.
  • 47. Nagesh, S. N. Combustion, performance and emission character-istics of karanja blended biodiesel in CI engine: effect of CR. J. Phys.: Conf. Ser. 1276 012068, 2019.
  • 48. Pandey, K. P. and Amit, I. P. Performance of a CI Engine using Karanja Biodiesel Blend: A Review. International Research Jour-nal of Engineering and Technology (IRJET), 5(10), pp. 1904-1907, 2018.
  • 49. SenthilKumar, R., Prabu, M., and Sukumar, M. Performance, Emission and Combustion Characteristics of a CI engine Using Karanja oil Methyl Ester as a biodiesel with Tyre Pyrolysis Blends. International Journal of Engineering Science and Innovative Technology (IJESIT), 3(4), pp. 837-849, 2014.
  • 50. Das, D., Kumar, A., and Yadav, A. Evaluation of perfor-mance, emission and combustion characteristics of a CI engine fueled with karanja biodiesel and diethyl ether blends, Biofuels, 9(1), pp. 89-94, 2018. DOI: 10.1080/17597269.2016.1257318
  • 51. Gad, M. S., El-Araby, R., Abed, K. A., El-Ibiari, N. N., El Morsi, A. K., and El-Diwani, G. I. Performance and emissions character-istics of C.I. engine fueled with palm oil/palm oil methyl ester blended with diesel fuel, Egyptian Journal of Petroleum, 27(2), pp. 215-219, 2018. https://doi.org/10.1016/j.ejpe.2017.05.009.
  • 52. Nahian, Md. R., Islam, Md. N., and Khan, S. Production of Bio-diesel from Palm Oil and Performance Test with Diesel in CI En-gine. International Conference on Mechanical, Industrial and En-ergy Engineering 2016, ICMIEE-PI-160160-2
  • 53. Kumar, A. N., Kishore, P. S., Raju, K. B., Kasianantham, N., and Bragadeshwaran, A. Engine parameter optimization of palm oil biodiesel as alternate fuel in CI engine. Environ Sci Pollut Res 26, 6652–6676 (2019). https://doi.org/10.1007/s11356-018-04084-z
  • 54. Sivakrishna, T., Madhu, S., and Sivakumar, K. The effect of palm biodiesel fuel on the performance of automotive four stroke diesel engine. IOP Conf. Series: Materials Science and Engineer-ing, 574 (2019) 012015, pp. 1-7.
  • 55. Gupta, R. Performance Analysis of a Diesel Engine using the Soybean Oil based Biodiesel. Indian Journal of Science and Technology, 9(36), pp. 1-6, 2016. DOI: 10.17485/ijst/2016/v9i36/102153.
  • 56. Hira, A. and Das, D. Performance and emission evaluation of diesel engine fuelled with biodiesel produced from high free fatty acid crude soyabean oil, Biofuels, 7(4), pp. 413-421, 2016. DOI: 10.1080/17597269.2016.1147920
  • 57. Azad A.K., Rasul M.G., Giannangelo B., Ahmed S.F. (2018) Diesel Engine Performance and Emission Study Using Soybean Biodiesel Blends with Fossil Diesel. In: Aloui F., Dincer I. (eds) Exergy for A Better Environment and Improved Sustainability, 2, pp. 137-155, 2018. Green Energy and Technology. Springer, Cham. https://doi.org/10.1007/978-3-319-62575-1_10
  • 58. Rathi A. and Kaushal R. Experimental Study of a Diesel Engine Using Soybean-Based Biodiesel and Diesel Blends. In: Gupta A., Mongia H., Chandna P., Sachdeva G. (eds) Advances in IC En-gines and Combustion Technology. NCICEC 2019, 2021. Lecture Notes in Mechanical Engineering. Springer, Singapore. https://doi.org/10.1007/978-981-15-5996-9_26
  • 59. Ilves, R., Kuut A. and Olt, J. (2019). Chapter 8 – Ethanol as In-ternal Combustion Engine Fuel. Ethanol, 215-225. https://doi.org/10.1016/B978-0-12-811458-2.00008-0
  • 60. Mayank C. J., Mayank J., Sumit S., and Anurag B. (2016). Alco-hol as an Alternative Fuel in I.C. Engine: A Review, International Journal of Engineering and Technical Research (IJETR), 4(2), 2454-4698.
  • 61. Bayetero, C. M., Yépez, C. M., Cevallos, I. B., and Rueda, E. H. (2022). Effect of the use of additives in biodiesel blends on the performance and opacity of a diesel engine, Materials Today: Proceedings, 49(1), pp. 93-99, https://doi.org/10.1016/j.matpr.2021.07.478.
  • 62. Jyothi, U. S., Gopinath, L., and Shankarachary, B. (2019). Effect of oxygenated and metal-based additives on performance, com-bustion and emission characteristics of Mahua bio-diesel at opti-mal blend, AIP Conference Proceedings 2200, 020029; https://doi.org/10.1063/1.5141199
  • 63. Madiwale, S., Karthikeyan, A., and Bhojwani, V. (2017). A Comprehensive Review of Effect of Biodiesel Additives on Properties, Performance, and Emission, IOP Conf. Ser.: Mater. Sci. Eng. 197 012015
  • 64. Kumar, R. N., Sekhar, Y., and Adinarayana, S. (2013). Effects of Compression Ratio and EGR on Performance, Combustion and Emissions of Di Injection Diesel Engine. International Journal of Applied Science and Engineering, 11(1), 41-49.
  • 65. Prasad, G. R., Goud, S. C., and Meheswar, D. (2012). Alternative Fuels for HCCI engine technology and recent developments. In-ternational Journal of Advanced Research in Engineering and Applied Science, 1(2), 1-19.
  • 66. Dec, J. E. (2009). Advanced Compression- Engines - understand-ing the in-cylinder process. The Combustion Institute, 32, 2727-2742.
  • 67. Charalambides, A. G. (2013). Homogenous Charge Compression Ignition (HCCI) Engines. In Advances in Internal Combustion Engines and Fuel Technologies (pp. 119-148). Cyprus: Intech.
  • 68. Himmatsinh, R. C., Syham, K. D., Preksha, K., and Vivek, G. T. (2015). A Technical Review of HCCI Combustion in Diesel en-gine. IJIRST-International Journal for Innovative Research in Sci-ence & Technology, 1(10), 28-31.
  • 69. Venkatesan, M., Moorthi, N. S., Franco, P. A., Manivannan, A., and Karthikeyan, R. (2015). Hydrous Methanol Fuelled HCCI Engine. Mechanics and Mechanical Engineering, 19(1), 31-49.
  • 70. Shehata, M., and Razek, A. S. (2008). Engine Performance Pa-rameters. Engineering Research Journal, 120, M32-M57.
  • 71. Sorathia, H. S., Rahhod, P. P., and Sorathiya, A. S. (2012). "Ef-fects of Exhaust Gas Recirculation (EGR) on NOx Emission on C.I. Engine" - A Review Study. International Journal of Ad-vanced Engineering Research and Studies, 1(3), 223-227.
  • 72. Baškovič, U. Z., Vihar, R., Oprešnik, S. R., Seljak, T., and Kat-rašnik, T. (2022). RCCI combustion with renewable fuel mix – Tailoring operating parameters to minimize exhaust emissions, Fuel, 311(1), pp. 1-13. https://doi.org/10.1016/j.fuel.2021.122590.
  • 73. Daiha, I. B., Said, M. A., Abdul Karim, Z. A., and Firmansyah, F. (2018). Strategies and methods of RCCI combustion: A review, AIP Conference Proceedings 2035, 030006 (2018); https://doi.org/10.1063/1.5075562
  • 74. Firmansyah, A. A., Heikal, M. R., Abidin, E. Z., and Panchatcha-ram, N. (2018). Reactivity Controlled Compression Ignition (RCCI) of Gasoline- CNG Mixtures, Intechopen- Improvement Trends for Internal Combustion Engines, DOI: 10.5772/intechopen.72880
  • 75. Alemayehu, G., Firew, D., Nallamothu, R.B., Kang, S.K. (2021). PCCI Combustion for Better Emissions in Diesel Engines. In: Jha, K., Gulati, P., Tripathi, U.K. (eds) Recent Advances in Sustaina-ble Technologies. Lecture Notes in Mechanical Engineering. Springer, Singapore. https://doi.org/10.1007/978-981-16-0976-3_17
  • 76. Singh, A. P., Jain, A., and Agarwal, A. K. (2017). Fuel-Injection Strategy for PCCI Engine Fueled by Mineral Diesel and Biodiesel Blends. Energy Fuels, 31(8), pp. 8594–8607. https://doi.org/10.1021/acs.energyfuels.6b03393.
  • 77. Zhao, Y., Weibo E, Niu, T., and He, J. (2021). Study on Combus-tion Processes of a Premixed Charge Compression Ignition (PCCI) Engine Fueled with DME/Diesel, Journal of Physics: Con-ference Series 1732 (2021) 012154. doi:10.1088/1742-6596/1732/1/012154.
There are 77 citations in total.

Details

Primary Language English
Subjects Automotive Combustion and Fuel Engineering
Journal Section Review Article
Authors

Olumide Towoju

Publication Date June 30, 2022
Published in Issue Year 2022 Volume: 2 Issue: 2

Cite

APA Towoju, O. (2022). Performance Optimization of Compression Ignition Engines: A Review. Engineering Perspective, 2(2), 21-27. https://doi.org/10.29228/eng.pers.63291