Research Article
BibTex RIS Cite
Year 2021, Volume: 1 Issue: 1, 22 - 29, 31.03.2021
https://doi.org/10.29228/sciperspective.49248

Abstract

References

  • 1. Senthilkumar, K., Chidanand, M., Nijalingappa, P., & Shivhare, M. M. (2010). Design, Development, and Validation of a Vehicle-mounted Hydraulically-leveled Platform. Defence Science Journal, 60(2).
  • 2. Cuihong, Z., Xuepeng, C., Shengjie, J., Bin, Y., Guanhong, W., & Zhaoqiang, Z. (2017). A leveling mechanism for the platform based on booms-constraint control of aerial vehicle. doi:103772/jissn1006-6748201703014
  • 3. Derlukiewicz, D., & Przybyłek, G. (2008). Chosen aspects of FEM strength analysis of telescopic jib mounted on mobile plat-form. Automation in construction, 17(3), 278-283.
  • 4. Kaytukov, B., & Stepanov, M. (2018). Current Issues of Mobile Cranes Unification. In MATEC Web of Conferences (Vol. 251, p. 03011). EDP Sciences.
  • 5. Qian, JB., Bao, LP., Yuan, RB., Yang, XJ.(2017) “Modeling and Analysis of Outrigger Reaction Forces of Hydraulic Mobile Crane”, International Journal of Engineering (IJE),TRANSACTIONS B: Applications 30,8,pp.1246-1252. doi: 10.5829/ije.2017.30.08b.18
  • 6. Stanford, N., Geng, J., Chun, Y. B., Davies, C. H. J., Nie, J. F., & Barnett, M. R. (2012). Effect of plate-shaped particle distributions on the deformation behaviour of magnesium alloy AZ91 in ten-sion and compression. Acta materialia, 60(1), 218-228.
  • 7. Gribniak, V., Kaklauskas, G., Kwan, A. K. H., Bacinskas, D., & Ulbinas, D. (2012). Deriving stress–strain relationships for steel fibre concrete in tension from tests of beams with ordinary rein-forcement. Engineering Structures, 42, 387-395.
  • 8. Liss, M., Kałaczyński, T., Dluhunovych, N., Dykha, A., & Marti-nod, R. M. (2021, January). Identification of loads of the con-struction of a Hybrid Multimedia Mobile Stage. In MATEC Web of Conferences (Vol. 332, p. 01024). EDP Sciences.
  • 9. Yang, Z., Sun, Z., Jiang, S., Mao, Q., Liu, P., & Xu, C. (2020). Structural Analysis on Impact-Mechanical Properties of Ultra-High Hydraulic Support. Int. J. Simul. Model, 19, 17-28.
  • 10. Yang, Y., Zeng, Q., Zhou, J., Wan, L., & Gao, K. (2018). The design and analysis of a new slipper-type hydraulic support. Plos one, 13(8), e0202431.
  • 11. Lu, X., Lv, Z., & Lv, Q. (2020). Self‐centering viscoelastic di-agonal brace for the outrigger of supertall buildings: Development and experiment investigation. The Structural Design of Tall and Special Buildings, 29(1), e1684.
  • 12. Romanello, G. (2020). A graphical approach for the determina-tion of outrigger loads in mobile cranes. Mechanics Based Design of Structures and Machines, 1-14.
  • 13. Ali, G. M., Mansoor, A., Liu, S., Olearczyk, J., Bouferguene, A., & Al-Hussein, M. (2021). Simulation of ground bearing pressure profile under hydraulic crane outrigger mats for the verification of 16-point combined loading. Procedia Computer Science, 180, 482-491.
  • 14. Aneziris, O.N., Papazoglou, I.A., Mudb, M.L., Damen,M., Kui-per,J., Baksteen,H., Ale,B.J., Bellamy, L.J., Hale,A.R., Bloemhoff,A., Post,J.G., Oh,J. (2008) “Towards risk assessment for crane activities”, Safety Science, 46,6,pp.872-884.
  • 15. Kan, C., Anumba, C. J., & Messner, J. I. (2019). A framework for CPS-based real-time mobile crane operations. In Advances in informatics and computing in civil and construction engineering (pp. 653-660). Springer, Cham.
  • 16. Fang, Y., Cho, Y. K., & Chen, J. (2016). A framework for real-time pro-active safety assistance for mobile crane lifting opera-tions. Automation in Construction, 72, 367-379.
  • 17. Hamid, A. R. A., Azhari, R., Zakaria, R., Aminudin, E., Jaya, R. P., Nagarajan, L., Yunus, R. (2019, January). Causes of crane ac-cidents at construction sites in Malaysia. In IOP Conference Series: Earth and Environmental Science (Vol. 220, p. 012028).
  • 18. Lee, J., Phillips, I., & Lynch, Z. (2020). Causes and prevention of mobile crane-related accidents in South Korea. International jour-nal of occupational safety and ergonomics, (just-accepted), 1-30.
  • 19. Milazzo, M.F., Ancione, G., Spasojević-Brkić, V.K., Valis, D. (2017) “Investigation of crane operation safety by analysing main accident causes”, Risk, Reliability and Safety: Innovating Theory and Practice – Walls, Revie & Bedford, Taylor & Francis Group, London, ISBN 978-1-138-02997-2, pp.74-80.
  • 20. Krastanov,K. (2017) “About the safety by usıng of mobıle cranes”, International Conference on Technology, Engineering and Science, Volume 1, pp.213-217.
  • 21. Neitzel, R.L., Seixas, N.S., Ren,K. K. (2001) “A review of crane safety in the construction industry. Applied Occupational and En-vironmental Hygiene”, Applied Occupational and Environmental Hygiene 16,12, pp.1106–1117.
  • 22. Siemens, A. G. "NX Nastran User’s Guide." Siemens Product Lifecycle Management Software Inc (2014).

Analysis of the Behavior of a Cross-Type Hydraulic Outrigger and Stabilizer Operating Under Determined Loads

Year 2021, Volume: 1 Issue: 1, 22 - 29, 31.03.2021
https://doi.org/10.29228/sciperspective.49248

Abstract

In this study, behavior of a fully opened cross type hydraulic outrigger and stabilizer of an aerial ladder fire-fighting device which is on determined static load is analyzed. This hydraulic outriggers and stabilizer are designed via SOLIDWORKS 2017 software and then analyzing process is run at SIEMENS NX 11.0 NASTRAN software. The location of the center of gravity of the firefighting device and its mass at several use cases is used as input for analysis. Standard equipment’s which can work with harmony are chosen for model, since design of a commercially producible model is aimed. Stress, strain values and forces acting on mills are obtained by analysis and then interpreted. When displacement of mass against gravity is 13 mm, displacement of outrigger and stabilizers system is ±4. The maximum stress at system is obtained as 190 MPa when singular values are filtered. Factor of safety is determined as 1,9 for this system. The system is decided as durable according to this study.

References

  • 1. Senthilkumar, K., Chidanand, M., Nijalingappa, P., & Shivhare, M. M. (2010). Design, Development, and Validation of a Vehicle-mounted Hydraulically-leveled Platform. Defence Science Journal, 60(2).
  • 2. Cuihong, Z., Xuepeng, C., Shengjie, J., Bin, Y., Guanhong, W., & Zhaoqiang, Z. (2017). A leveling mechanism for the platform based on booms-constraint control of aerial vehicle. doi:103772/jissn1006-6748201703014
  • 3. Derlukiewicz, D., & Przybyłek, G. (2008). Chosen aspects of FEM strength analysis of telescopic jib mounted on mobile plat-form. Automation in construction, 17(3), 278-283.
  • 4. Kaytukov, B., & Stepanov, M. (2018). Current Issues of Mobile Cranes Unification. In MATEC Web of Conferences (Vol. 251, p. 03011). EDP Sciences.
  • 5. Qian, JB., Bao, LP., Yuan, RB., Yang, XJ.(2017) “Modeling and Analysis of Outrigger Reaction Forces of Hydraulic Mobile Crane”, International Journal of Engineering (IJE),TRANSACTIONS B: Applications 30,8,pp.1246-1252. doi: 10.5829/ije.2017.30.08b.18
  • 6. Stanford, N., Geng, J., Chun, Y. B., Davies, C. H. J., Nie, J. F., & Barnett, M. R. (2012). Effect of plate-shaped particle distributions on the deformation behaviour of magnesium alloy AZ91 in ten-sion and compression. Acta materialia, 60(1), 218-228.
  • 7. Gribniak, V., Kaklauskas, G., Kwan, A. K. H., Bacinskas, D., & Ulbinas, D. (2012). Deriving stress–strain relationships for steel fibre concrete in tension from tests of beams with ordinary rein-forcement. Engineering Structures, 42, 387-395.
  • 8. Liss, M., Kałaczyński, T., Dluhunovych, N., Dykha, A., & Marti-nod, R. M. (2021, January). Identification of loads of the con-struction of a Hybrid Multimedia Mobile Stage. In MATEC Web of Conferences (Vol. 332, p. 01024). EDP Sciences.
  • 9. Yang, Z., Sun, Z., Jiang, S., Mao, Q., Liu, P., & Xu, C. (2020). Structural Analysis on Impact-Mechanical Properties of Ultra-High Hydraulic Support. Int. J. Simul. Model, 19, 17-28.
  • 10. Yang, Y., Zeng, Q., Zhou, J., Wan, L., & Gao, K. (2018). The design and analysis of a new slipper-type hydraulic support. Plos one, 13(8), e0202431.
  • 11. Lu, X., Lv, Z., & Lv, Q. (2020). Self‐centering viscoelastic di-agonal brace for the outrigger of supertall buildings: Development and experiment investigation. The Structural Design of Tall and Special Buildings, 29(1), e1684.
  • 12. Romanello, G. (2020). A graphical approach for the determina-tion of outrigger loads in mobile cranes. Mechanics Based Design of Structures and Machines, 1-14.
  • 13. Ali, G. M., Mansoor, A., Liu, S., Olearczyk, J., Bouferguene, A., & Al-Hussein, M. (2021). Simulation of ground bearing pressure profile under hydraulic crane outrigger mats for the verification of 16-point combined loading. Procedia Computer Science, 180, 482-491.
  • 14. Aneziris, O.N., Papazoglou, I.A., Mudb, M.L., Damen,M., Kui-per,J., Baksteen,H., Ale,B.J., Bellamy, L.J., Hale,A.R., Bloemhoff,A., Post,J.G., Oh,J. (2008) “Towards risk assessment for crane activities”, Safety Science, 46,6,pp.872-884.
  • 15. Kan, C., Anumba, C. J., & Messner, J. I. (2019). A framework for CPS-based real-time mobile crane operations. In Advances in informatics and computing in civil and construction engineering (pp. 653-660). Springer, Cham.
  • 16. Fang, Y., Cho, Y. K., & Chen, J. (2016). A framework for real-time pro-active safety assistance for mobile crane lifting opera-tions. Automation in Construction, 72, 367-379.
  • 17. Hamid, A. R. A., Azhari, R., Zakaria, R., Aminudin, E., Jaya, R. P., Nagarajan, L., Yunus, R. (2019, January). Causes of crane ac-cidents at construction sites in Malaysia. In IOP Conference Series: Earth and Environmental Science (Vol. 220, p. 012028).
  • 18. Lee, J., Phillips, I., & Lynch, Z. (2020). Causes and prevention of mobile crane-related accidents in South Korea. International jour-nal of occupational safety and ergonomics, (just-accepted), 1-30.
  • 19. Milazzo, M.F., Ancione, G., Spasojević-Brkić, V.K., Valis, D. (2017) “Investigation of crane operation safety by analysing main accident causes”, Risk, Reliability and Safety: Innovating Theory and Practice – Walls, Revie & Bedford, Taylor & Francis Group, London, ISBN 978-1-138-02997-2, pp.74-80.
  • 20. Krastanov,K. (2017) “About the safety by usıng of mobıle cranes”, International Conference on Technology, Engineering and Science, Volume 1, pp.213-217.
  • 21. Neitzel, R.L., Seixas, N.S., Ren,K. K. (2001) “A review of crane safety in the construction industry. Applied Occupational and En-vironmental Hygiene”, Applied Occupational and Environmental Hygiene 16,12, pp.1106–1117.
  • 22. Siemens, A. G. "NX Nastran User’s Guide." Siemens Product Lifecycle Management Software Inc (2014).
There are 22 citations in total.

Details

Primary Language English
Subjects Machine Theory and Dynamics
Journal Section Articles
Authors

Mustafa Karaman This is me 0000-0001-9574-9732

Emre Öztürk This is me 0000-0002-5971-0520

Publication Date March 31, 2021
Published in Issue Year 2021 Volume: 1 Issue: 1

Cite

APA Karaman, M., & Öztürk, E. (2021). Analysis of the Behavior of a Cross-Type Hydraulic Outrigger and Stabilizer Operating Under Determined Loads. Engineering Perspective, 1(1), 22-29. https://doi.org/10.29228/sciperspective.49248