Review Article
BibTex RIS Cite
Year 2021, Volume: 1 Issue: 2, 38 - 51, 30.06.2021
https://doi.org/10.29228/eng.pers.50853

Abstract

References

  • 1. Aly, A. A., & Salem, F. A. (2013). Vehicle suspension systems control: a review. International journal of control, automation and systems, 2(2), 46-54.
  • 2. Rao, T. R. M. R., Mohan, R., Rao, G. V., Rao, K. S., & Purushottam, A. (2010). Analysis of passive and semi active controlled suspension systems for ride comfort in an omnibus passing over a speed bump. International Journal of Research and Reviews in Applied Sciences,5(1).
  • 3. Ahmadian, M. (2014). Integrating electromechanical systems in commercial vehicles for improved handling, stability, and comfort. SAE International Journal of Commercial Vehicles, 7(2014-01-2408), 535-587.
  • 4. Fialho, I., & Balas, G. J. (2002). Road adaptive active suspension design using linear parameter-varying gain-scheduling. IEEE transactions on control systems technology, 10(1), 43-54.
  • 5. Mulla, A. A., & Unaune, D. R. (2013, March). Active suspensions future trend of automotive suspensions. In International Conference on Emerging Trends in Technology&Its Appliocations, ICETTA.
  • 6. Gysen, B. L., Paulides, J. J., Janssen, J. L., & Lomonova, E. A. (2009). Active electromagnetic suspension system for improved vehicle dynamics. IEEE Transactions on Vehicular Technology, 59(3), 1156-1163.
  • 7. Rashid, M. M., Hussain, M. A., Rahim, A. N., & Momoh, M. J. E. (2007). Development of a semi-active car suspension control system using magneto-rheological damper model.
  • 8. Félix-Herrán, L. C., de Jesús Rodríguez-Ortiz, J., Soto, R., & Ramírez-Mendoza, R. (2008, October). Modeling and control for a semi-active suspension with a magnetorheological damper including the actuator dynamics. In 2008 Electronics, Robotics and Automotive Mechanics Conference (CERMA'08) (pp. 338-343). IEEE.
  • 9. Rabinow, J. (1948). The magnetic fluid clutch. Electrical Engineering, 67(12), 1167-1167.
  • 10. Kim, J. H., Kang, B. W., Park, K. M., Choi, S. B., & Kim, K. S. (2002). MR inserts for shock wave reduction in warship structures. Journal of intelligent material systems and structures, 13(10), 661-665.
  • 11. Seong, M. S., Choi, S. B., & Sung, K. G. (2011). Control strategies for vehicle suspension system featuring magnetorheological (MR) damper. Vibration Analysis and Control: New Trends and Developments; InTech: London, UK, 97-114.
  • 12. Sosthene, K., Josee, M., & Xiong, H. U. İ. (2018). Fuzzy logic controller for semi active suspension based on magneto-rheological damper. International Journal of Automotive Engineering and Technologies, 7(1), 38-47.
  • 13. Carlson, J. D., Catanzarite, D. M., & St. Clair, K. A. (1996). Commercial magneto-rheological fluid devices. International Journal of Modern Physics B, 10(23n24), 2857-2865.
  • 14. Ashtiani, M., Hashemabadi, S. H., & Ghaffari, A. (2015). A review on the magnetorheological fluid preparation and stabilization. Journal of magnetism and Magnetic Materials, 374, 716-730.
  • 15. Muhammad, A., Yao, X. L., & Deng, Z. C. (2006). Review of magnetorheological (MR) fluids and its applications in vibration control. Journal of Marine Science and Application, 5(3), 17-29.
  • 16. Jolly, M. R., Bender, J. W., & Carlson, J. D. (1999). Properties and applications of commercial magnetorheological fluids. Journal of intelligent material systems and structures, 10(1), 5-13.
  • 17. Gołdasz, J., & Sapiński, B. (2015). Insight into magnetorheological shock absorbers (pp. 1-224). Switzerland: Springer International Publishing.
  • 18. Goncalves, F. D., Koo, J. H., & Ahmadian, M. (2006). A review of the state of the art in magnetorheological fluid technologies--Part I: MR fluid and MR fluid models. The Shock and Vibration Digest, 38(3), 203-220.
  • 19. Kciuk, M., & Turczyn, R. (2006). Properties and application of magnetorheological fluids. Journal of Achievements in Materials and Manufacturing Engineering, 18(1-2), 127-130.
  • 20. Hajalilou, A., Mazlan, S. A., Lavvafi, H., & Shameli, K. (2016). Magnetorheological fluid applications. In Field Responsive Fluids as Smart Materials (pp. 67-81). Springer, Singapore.
  • 21. Yao, G. Z., Yap, F. F., Chen, G., Li, W., & Yeo, S. H. (2002). MR damper and its application for semi-active control of vehicle suspension system. Mechatronics, 12(7), 963-973.
  • 22. Olabi, A. G., & Grunwald, A. (2007). Design and application of magneto-rheological fluid. Materials & design, 28(10), 2658-2664.
  • 23. Gudmundsson, K. H., Jonsdottir, F., & Thorsteinsson, F. (2010). A geometrical optimization of a magneto-rheological rotary brake in a prosthetic knee. Smart materials and Structures, 19(3), 035023.
  • 24. Baranwal, D., & Deshmukh, T. S. (2012). MR-fluid technology and its application-a review. International Journal of Emerging Technology and Advanced Engineering, 2(12), 563-569.
  • 25. De Vicente, J., Klingenberg, D. J., & Hidalgo-Alvarez, R. (2011). Magnetorheological fluids: a review. Soft matter, 7(8), 3701-3710.
  • 26. Dyke, S. J., Spencer Jr, B. F., Sain, M. K., & Carlson, J. D. (1996). Modeling and control of magnetorheological dampers for seismic response reduction. Smart materials and structures, 5(5), 565.
  • 27. Carlson, J. D., & Jolly, M. R. (2000). MR fluid, foam and elastomer devices. mechatronics, 10(4-5), 555-569.
  • 28. Gong, X., Ruan, X., Xuan, S., Yan, Q., & Deng, H. (2014). Magnetorheological damper working in squeeze mode. Advances in Mechanical Engineering, 6, 410158.
  • 29. Braz-César, M. T., & Barros, R. (2012). Properties and numerical modeling of MR dampers. Proceedings of the ICEM15-Experimental Mechanics: New trends and Perspectives, 1199-1200.
  • 30. Stanway, R. S. J. L., Sproston, J. L., & Stevens, N. G. (1987). Non-linear modelling of an electro-rheological vibration damper. Journal of Electrostatics, 20(2), 167-184.
  • 31. Guo, S., Yang, S., & Pan, C. (2006). Dynamic modeling of magnetorheological damper behaviors. Journal of Intelligent material systems and structures, 17(1), 3-14.
  • 32. Bouc, R. (1971). A mathematical model for hysteresis. Acta Acustica united with Acustica, 24(1), 16-25.
  • 33. Wen, Y. K. (1976). Method for random vibration of hysteretic systems. Journal of the engineering mechanics division, 102(2), 249-263.
  • 34. Spencer Jr, B., Dyke, S. J., Sain, M. K., & Carlson, J. (1997). Phenomenological model for magnetorheological dampers. Journal of engineering mechanics, 123(3), 230-238.
  • 35. Sosthene, K., JOSEE, M., & EMMANUEL, K. (2018). Vehicle ride comfort optimization based on Magneto-rheological damper. International Journal of Automotive Science And Technology, 2(4), 1-8.
  • 36. Y. Iskandarani and H. Karimi, "Hysteresis modeling for the rotational magnetorheological damper," in Proceedings of the 4th WSEAS International Conference on Energy and Development-environment-biomedicine, 2011, pp. 479-485.
  • 37. Zhang, H., Winner, H., & Li, W. (2009). Comparison between skyhook and minimax control strategies for semi-active suspension system. World Academy of Science, Engineering and Technology, 55(5), 618-621.
  • 38. Choi, S. B., Seong, M. S., & Kim, K. S. (2009). Vibration control of an electrorheological fluid-based suspension system with an energy regenerative mechanism. Proceedings of the Institution of Mechanical Engineers, Part D: Journal of Automobile Engineering, 223(4), 459-469.
  • 39. Mulla, A., Jalwadi, S., & Unaune, D. (2014). Performance analysis of skyhook, groundhook and hybrid control strategies on semiactive suspension system. International Journal of Current Engineering and Technology, 3, 265-269.
  • 40. Assadsangabi, B., Eghtesad, M., Daneshmand, F., & Vahdati, N. (2009). Hybrid sliding mode control of semi-active suspension systems. Smart Materials and Structures, 18(12), 125027.
  • 41. Yokoyama, M., Hedrick, J. K., & Toyama, S. (2001, June). A model following sliding mode controller for semi-active suspension systems with MR dampers. In Proceedings of the 2001 American Control Conference.(Cat. No. 01CH37148) (Vol. 4, pp. 2652-2657). IEEE.
  • 42. Singla, U. L., & Singh, S. P. (2004). Semi-active control of automotive vehicle suspension system using magnetorheological damper-a review.
  • 43. Perruquetti, W., & Barbot, J. P. (2002). Sliding mode control in engineering. CRC press.
  • 44. Zhang, H., Wang, E., Zhang, N., Min, F., Subash, R., & Su, C. (2015). Semi-active sliding mode control of vehicle suspension with magneto-rheological damper. Chinese Journal of Mechanical Engineering, 28(1), 63-75.
  • 45. J. Liu and X. Wang, Advanced sliding mode control for mechanical systems: design, analysis and MATLAB simulation: Springer Science & Business Media, 2012.
  • 46. L. A. Zadeh, "Fuzzy sets," Information and control, vol. 8, pp. 338-353, 1965.
  • 47. Mamdani, E. H. (1977). Application of fuzzy logic to approximate reasoning using linguistic synthesis. IEEE transactions on computers, 26(12), 1182-1191.
  • 48. Rasal, S., Jaganmohan, J., Agashe, S., & Wani, K. P. (2016). Implementation of fuzzy logic control in semiactive suspension for a vehicle using MATLAB SIMULINK (No. 2016-28-0035). SAE Technical Paper.
  • 49. Speyer, J. (1979). Computation and transmission requirements for a decentralized linear-quadratic-Gaussian control problem. IEEE Transactions on Automatic Control, 24(2), 266-269.
  • 50. ElMadany, M. M., & Abduljabbar, Z. S. (1999). Linear quadratic Gaussian control of a quarter-car suspension. Vehicle System Dynamics, 32(6), 479-497.

Review of semi-active suspension based on Magneto-rheological damper

Year 2021, Volume: 1 Issue: 2, 38 - 51, 30.06.2021
https://doi.org/10.29228/eng.pers.50853

Abstract

Vehicle suspension system plays a critical role in transferring static and dynamic loads produced by the vibration of vehicle body and wheels and absorbing shock vibration caused by road roughness. Low damping provides a better vehicle mass isolation and it give a ride comfort and hard damping provides vehicle stability with good road holding. The need to enhance conflicting odds between ride comfort and vehicle stability makes the design of the suspension a significant part particularly for off- road vehicles. Passive suspension can’t mitigate tradeoff between ride comfort and vehicle stability, because it presents a high frequency vibration. It is in this line various types of sus-pension, like semi- active suspension, active suspension and intelligent suspension have been developed to reduce this compromise need. This paper aims to describe in details different types of vehicle suspensions, their characteristics, and their working principles mode. It illustrates in details the magneto rheological fluid (intelligent fluid) properties, compositions, mechanical model of Magneto-rheological damper like Bingham model and BoucWen model. It also reviews semi active suspension control strategies based on Magneto rheological damper, like skyhook, ground hook, sliding mode, fuzzy logic and linear quadratic Gaussian. Simulations shows that a combination of more than two control strategies provide a better vehicle comfort and vehicle stability at the same time.

References

  • 1. Aly, A. A., & Salem, F. A. (2013). Vehicle suspension systems control: a review. International journal of control, automation and systems, 2(2), 46-54.
  • 2. Rao, T. R. M. R., Mohan, R., Rao, G. V., Rao, K. S., & Purushottam, A. (2010). Analysis of passive and semi active controlled suspension systems for ride comfort in an omnibus passing over a speed bump. International Journal of Research and Reviews in Applied Sciences,5(1).
  • 3. Ahmadian, M. (2014). Integrating electromechanical systems in commercial vehicles for improved handling, stability, and comfort. SAE International Journal of Commercial Vehicles, 7(2014-01-2408), 535-587.
  • 4. Fialho, I., & Balas, G. J. (2002). Road adaptive active suspension design using linear parameter-varying gain-scheduling. IEEE transactions on control systems technology, 10(1), 43-54.
  • 5. Mulla, A. A., & Unaune, D. R. (2013, March). Active suspensions future trend of automotive suspensions. In International Conference on Emerging Trends in Technology&Its Appliocations, ICETTA.
  • 6. Gysen, B. L., Paulides, J. J., Janssen, J. L., & Lomonova, E. A. (2009). Active electromagnetic suspension system for improved vehicle dynamics. IEEE Transactions on Vehicular Technology, 59(3), 1156-1163.
  • 7. Rashid, M. M., Hussain, M. A., Rahim, A. N., & Momoh, M. J. E. (2007). Development of a semi-active car suspension control system using magneto-rheological damper model.
  • 8. Félix-Herrán, L. C., de Jesús Rodríguez-Ortiz, J., Soto, R., & Ramírez-Mendoza, R. (2008, October). Modeling and control for a semi-active suspension with a magnetorheological damper including the actuator dynamics. In 2008 Electronics, Robotics and Automotive Mechanics Conference (CERMA'08) (pp. 338-343). IEEE.
  • 9. Rabinow, J. (1948). The magnetic fluid clutch. Electrical Engineering, 67(12), 1167-1167.
  • 10. Kim, J. H., Kang, B. W., Park, K. M., Choi, S. B., & Kim, K. S. (2002). MR inserts for shock wave reduction in warship structures. Journal of intelligent material systems and structures, 13(10), 661-665.
  • 11. Seong, M. S., Choi, S. B., & Sung, K. G. (2011). Control strategies for vehicle suspension system featuring magnetorheological (MR) damper. Vibration Analysis and Control: New Trends and Developments; InTech: London, UK, 97-114.
  • 12. Sosthene, K., Josee, M., & Xiong, H. U. İ. (2018). Fuzzy logic controller for semi active suspension based on magneto-rheological damper. International Journal of Automotive Engineering and Technologies, 7(1), 38-47.
  • 13. Carlson, J. D., Catanzarite, D. M., & St. Clair, K. A. (1996). Commercial magneto-rheological fluid devices. International Journal of Modern Physics B, 10(23n24), 2857-2865.
  • 14. Ashtiani, M., Hashemabadi, S. H., & Ghaffari, A. (2015). A review on the magnetorheological fluid preparation and stabilization. Journal of magnetism and Magnetic Materials, 374, 716-730.
  • 15. Muhammad, A., Yao, X. L., & Deng, Z. C. (2006). Review of magnetorheological (MR) fluids and its applications in vibration control. Journal of Marine Science and Application, 5(3), 17-29.
  • 16. Jolly, M. R., Bender, J. W., & Carlson, J. D. (1999). Properties and applications of commercial magnetorheological fluids. Journal of intelligent material systems and structures, 10(1), 5-13.
  • 17. Gołdasz, J., & Sapiński, B. (2015). Insight into magnetorheological shock absorbers (pp. 1-224). Switzerland: Springer International Publishing.
  • 18. Goncalves, F. D., Koo, J. H., & Ahmadian, M. (2006). A review of the state of the art in magnetorheological fluid technologies--Part I: MR fluid and MR fluid models. The Shock and Vibration Digest, 38(3), 203-220.
  • 19. Kciuk, M., & Turczyn, R. (2006). Properties and application of magnetorheological fluids. Journal of Achievements in Materials and Manufacturing Engineering, 18(1-2), 127-130.
  • 20. Hajalilou, A., Mazlan, S. A., Lavvafi, H., & Shameli, K. (2016). Magnetorheological fluid applications. In Field Responsive Fluids as Smart Materials (pp. 67-81). Springer, Singapore.
  • 21. Yao, G. Z., Yap, F. F., Chen, G., Li, W., & Yeo, S. H. (2002). MR damper and its application for semi-active control of vehicle suspension system. Mechatronics, 12(7), 963-973.
  • 22. Olabi, A. G., & Grunwald, A. (2007). Design and application of magneto-rheological fluid. Materials & design, 28(10), 2658-2664.
  • 23. Gudmundsson, K. H., Jonsdottir, F., & Thorsteinsson, F. (2010). A geometrical optimization of a magneto-rheological rotary brake in a prosthetic knee. Smart materials and Structures, 19(3), 035023.
  • 24. Baranwal, D., & Deshmukh, T. S. (2012). MR-fluid technology and its application-a review. International Journal of Emerging Technology and Advanced Engineering, 2(12), 563-569.
  • 25. De Vicente, J., Klingenberg, D. J., & Hidalgo-Alvarez, R. (2011). Magnetorheological fluids: a review. Soft matter, 7(8), 3701-3710.
  • 26. Dyke, S. J., Spencer Jr, B. F., Sain, M. K., & Carlson, J. D. (1996). Modeling and control of magnetorheological dampers for seismic response reduction. Smart materials and structures, 5(5), 565.
  • 27. Carlson, J. D., & Jolly, M. R. (2000). MR fluid, foam and elastomer devices. mechatronics, 10(4-5), 555-569.
  • 28. Gong, X., Ruan, X., Xuan, S., Yan, Q., & Deng, H. (2014). Magnetorheological damper working in squeeze mode. Advances in Mechanical Engineering, 6, 410158.
  • 29. Braz-César, M. T., & Barros, R. (2012). Properties and numerical modeling of MR dampers. Proceedings of the ICEM15-Experimental Mechanics: New trends and Perspectives, 1199-1200.
  • 30. Stanway, R. S. J. L., Sproston, J. L., & Stevens, N. G. (1987). Non-linear modelling of an electro-rheological vibration damper. Journal of Electrostatics, 20(2), 167-184.
  • 31. Guo, S., Yang, S., & Pan, C. (2006). Dynamic modeling of magnetorheological damper behaviors. Journal of Intelligent material systems and structures, 17(1), 3-14.
  • 32. Bouc, R. (1971). A mathematical model for hysteresis. Acta Acustica united with Acustica, 24(1), 16-25.
  • 33. Wen, Y. K. (1976). Method for random vibration of hysteretic systems. Journal of the engineering mechanics division, 102(2), 249-263.
  • 34. Spencer Jr, B., Dyke, S. J., Sain, M. K., & Carlson, J. (1997). Phenomenological model for magnetorheological dampers. Journal of engineering mechanics, 123(3), 230-238.
  • 35. Sosthene, K., JOSEE, M., & EMMANUEL, K. (2018). Vehicle ride comfort optimization based on Magneto-rheological damper. International Journal of Automotive Science And Technology, 2(4), 1-8.
  • 36. Y. Iskandarani and H. Karimi, "Hysteresis modeling for the rotational magnetorheological damper," in Proceedings of the 4th WSEAS International Conference on Energy and Development-environment-biomedicine, 2011, pp. 479-485.
  • 37. Zhang, H., Winner, H., & Li, W. (2009). Comparison between skyhook and minimax control strategies for semi-active suspension system. World Academy of Science, Engineering and Technology, 55(5), 618-621.
  • 38. Choi, S. B., Seong, M. S., & Kim, K. S. (2009). Vibration control of an electrorheological fluid-based suspension system with an energy regenerative mechanism. Proceedings of the Institution of Mechanical Engineers, Part D: Journal of Automobile Engineering, 223(4), 459-469.
  • 39. Mulla, A., Jalwadi, S., & Unaune, D. (2014). Performance analysis of skyhook, groundhook and hybrid control strategies on semiactive suspension system. International Journal of Current Engineering and Technology, 3, 265-269.
  • 40. Assadsangabi, B., Eghtesad, M., Daneshmand, F., & Vahdati, N. (2009). Hybrid sliding mode control of semi-active suspension systems. Smart Materials and Structures, 18(12), 125027.
  • 41. Yokoyama, M., Hedrick, J. K., & Toyama, S. (2001, June). A model following sliding mode controller for semi-active suspension systems with MR dampers. In Proceedings of the 2001 American Control Conference.(Cat. No. 01CH37148) (Vol. 4, pp. 2652-2657). IEEE.
  • 42. Singla, U. L., & Singh, S. P. (2004). Semi-active control of automotive vehicle suspension system using magnetorheological damper-a review.
  • 43. Perruquetti, W., & Barbot, J. P. (2002). Sliding mode control in engineering. CRC press.
  • 44. Zhang, H., Wang, E., Zhang, N., Min, F., Subash, R., & Su, C. (2015). Semi-active sliding mode control of vehicle suspension with magneto-rheological damper. Chinese Journal of Mechanical Engineering, 28(1), 63-75.
  • 45. J. Liu and X. Wang, Advanced sliding mode control for mechanical systems: design, analysis and MATLAB simulation: Springer Science & Business Media, 2012.
  • 46. L. A. Zadeh, "Fuzzy sets," Information and control, vol. 8, pp. 338-353, 1965.
  • 47. Mamdani, E. H. (1977). Application of fuzzy logic to approximate reasoning using linguistic synthesis. IEEE transactions on computers, 26(12), 1182-1191.
  • 48. Rasal, S., Jaganmohan, J., Agashe, S., & Wani, K. P. (2016). Implementation of fuzzy logic control in semiactive suspension for a vehicle using MATLAB SIMULINK (No. 2016-28-0035). SAE Technical Paper.
  • 49. Speyer, J. (1979). Computation and transmission requirements for a decentralized linear-quadratic-Gaussian control problem. IEEE Transactions on Automatic Control, 24(2), 266-269.
  • 50. ElMadany, M. M., & Abduljabbar, Z. S. (1999). Linear quadratic Gaussian control of a quarter-car suspension. Vehicle System Dynamics, 32(6), 479-497.
There are 50 citations in total.

Details

Primary Language English
Subjects Vehicle Technique and Dynamics
Journal Section Articles
Authors

Musabyımana Josee 0000-0003-4433-9586

Kazima Sosthene 0000-0002-4427-130X

Pacifique Turabimana 0000-0003-2422-9056

Publication Date June 30, 2021
Published in Issue Year 2021 Volume: 1 Issue: 2

Cite

APA Josee, M., Sosthene, K., & Turabimana, P. (2021). Review of semi-active suspension based on Magneto-rheological damper. Engineering Perspective, 1(2), 38-51. https://doi.org/10.29228/eng.pers.50853