Research Article
BibTex RIS Cite
Year 2022, Volume: 2 Issue: 4, 46 - 51, 31.12.2022
https://doi.org/10.29228/eng.pers.66826

Abstract

References

  • 1. Vo-Duy, T., Duong-Gia, D., Ho-Huu, V., Vu-Do, H. C., Nguyen-Thoi, T. (2017). Multi-objective optimization of laminated com-posite beam structures using NSGA-II algorithm. Composite Structures, 168, 498-509.
  • 2. Ebrahimi, F., Nouraei, M., & Dabbagh, A. (2020). Modeling vi-bration behavior of embedded graphene-oxide powder-reinforced nanocomposite plates in thermal environment. Mechanics Based Design of Structures and Machines, 48(2), 217-240.
  • 3. Solmaz, M. Y., Mustafa, Gür. Tabakalı Kompozit Plakalarda Takviye Malzemesi ve Oryantasyon Açısının Gerilme Analizine Etkisi. Fırat Üniversitesi Doğu Araştırmaları Dergisi, 6(1), 16-25.
  • 4. Aydin, L., Artem, H. S., Savran, M. Genetik Algoritma Kullanılarak Boyutsal Kararlı Kompozit Malzemelerin Optimi-zasyonu. Afyon Kocatepe Üniversitesi Fen Ve Mühendislik Bilimleri Dergisi, 17(3), 1136-1145. DOİ: 10.5578/fmbd.64041
  • 5. Kaymaz, K., Zengin, B., Aşkın, M., Taşkaya, S. (2018). Investi-gation of Mechanical Stresses on Sandwich Composite Layers According to The Pressure By Making Use of Ansys Software. Gümüşhane Üniversitesi Fen Bilimleri Enstitüsü Dergisi,(CMES 2018 Sempozyum Ek sayısı), 79-93.
  • 6. Küçükrendeci, İ. (2017). Nonlinear Vibration Analysis of Com-posite Plates on Elastic Foundations in Thermal Environments. Afyon Kocatepe Üniversitesi Fen Ve Mühendislik Bilimleri Dergisi, 17(2), 790-796. DOI: 10.5578/fmbd.57619
  • 7. Karaman M., Öztürk E. (2021). Analysis of the Behavior of a Cross-Type Hydraulic Outrigger and Stabilizer Operating Under Determined Loads. Engineering Perspective 1 (1): 22-29, 2021. http://dx.doi.org/10.29228/sciperspective.49248
  • 8. Turan, M. (2007). Tabakalı kompozit malzemelerde yüksek hızlı darbe hasarı. Mühendis ve Makina, 48(575), 3-8.
  • 9. Saraçoğlu, M. H., & Gürlek, M. E. (2020). Tabakalı Kompozit Kirişlerin Eğilme Analizi. Journal of Scientific Reports-B, Num-ber 1, 19-33, June 2020
  • 10. Çevik, M. (2007). Basit mesnetli simetrik çapraz ve açılı tabakalı kompozit kirişlerin etkileşimli serbest titreşimleri. 15. Ulusal Mekanik Kongresi, 03-07 Eylül, Isparta.
  • 11. Hüseyinoğlu, M., Tayfun, Abut. (2019). İki Ucu Ankastre U Çerçeve Yapının Modal Analizi. Muş Alparslan Üniversitesi Fen Bilimleri Dergisi, 7(2), 657-665. https://doi.org/10.18586/msufbd.637678
  • 12. Yıldırım, Ş., Emir, E. S. İ. M. (2019). Çift Köprülü Aski Tip Kren Sistemlerinin Sonlu Elemanlar Metodu ile Modal Analizi. Konya Mühendislik Bilimleri Dergisi, 7, 975-988.
  • 13. Naskar, S., Mukhopadhyay, T., Sriramula, S., & Adhikari, S. (2017). Stochastic natural frequency analysis of damaged thin-walled laminated composite beams with uncertainty in microme-chanical properties. Composite Structures, 160, 312-334. DOI: 10.36306/konjes.627067
  • 14. Abualnour, M., Houari, M. S. A., Tounsi, A., & Mahmoud, S. R. (2018). A novel quasi-3D trigonometric plate theory for free vi-bration analysis of advanced composite plates. Composite Struc-tures, 184, 688-697.
  • 15. Şakar, G., Yaman, M., Bolat, F. Ç. (2010). Bal peteği sandviç kompozit yapıların dinamik analizi. 2. Ulusal Tasarım İmalat ve Analiz Kongresi, 11-12 Kasım, Balıkesir, 531–540.
  • 16. Atlıhan, G. (2010). Süreksı̇zlı̇k bölgesı̇ne sahı̇p tabakalı kompozı̇t kı̇rı̇şlerı̇n tı̇treşı̇m analı̇zı̇, Doktora Tezi, Pamukkale Üniversitesi Fen Bilimleri Enstitüsü, Pamukkale.
  • 17. Gibson, R. F. (2000). Modal vibration response measurements for characterization of composite materials and structures. Compo-sites Science And Technology, 60, 2769–2780. DOI: 10.1016/S0266-3538(00)00092-0
  • 18. Yesilyurt, I., Gursoy, H. (2015). Estimation of elastic and modal parameters in composites using vibration analysis. Journal of Vi-bration and Control, 21(3), 509-524. DOI: 10.1177/1077546313486275
  • 19. Soni, P. J. and Iyengar, N. G. R. (1983). Optimal design of clamped laminated composite plates. Fibre Science and Technol-ogy, 19 (4), 281-296.
  • 20. Vatangül, E. (2008). Kompozit malzemelerin mekanik özellikle-rinin belirlenmesi ve ansys 10 programı ile ısıl gerilme analizi, Bitirme Projesi, Dokuz Eylül Üniversitesi Mühendislik Fakültesi Makine Mühendisliği Bölümü, İzmir.
  • 21. Baba, A. B. (2013). Delaminasyonlu tabakalı kompozit plakaların burkulma analizi, Yüksek Lisans Tezi, Dokuz Eylül Üniversitesi Fen Bilimleri Enstitüsü, İzmir.
  • 22. Kaw, A. K. (2005). Mechanics of composite materials (Second edition). USA: CRC Press.
  • 23. İnal, O., Balıkoğlu, F., & Ataş, A. (2018). Bolted joints in quasi-unidirectional glass-fibre NCF composite laminates. Composite Structures, 183, 536-544.
  • 24. Inal, O & Atas, A 2018, 'Experimental investigation of pinned joints in NCF Glass-Fibre reinforced composite plates', Journal Of The Faculty Of Engineering And Architecture Of Gazi Uni-versity, vol. 33, no. 4, pp. 1445-1457. https://doi.org/10.17341/gazimmfd.416441
  • 25. Kiani, Y. (2017). Free vibration of carbon nanotube reinforced composite plate on point supports using Lagrangian multipliers. Meccanica, 52(6), 1353-1367. DOI 10.1007/s11012-016-0466-3
  • 26. Zhai, Y., Liang, S. (2017). Optimal lay-ups to maximize loss fac-tor of cross-ply composite plate. Composite Structures, 168, 597-607. http://dx.doi.org/10.1016/j.compstruct.2017.01.019
  • 27. Shao, D., Hu, F., Wang, Q., Pang, F., & Hu, S. (2016). Transient response analysis of cross-ply composite laminated rectangular plates with general boundary restraints by the method of rever-beration ray matrix. Composite Structures, 152, 168-182. http://dx.doi.org/10.1016/j.compstruct.2016.05.035

Investigation of Natural Frequency Values of Composite Cover Design with Different Laying Angles

Year 2022, Volume: 2 Issue: 4, 46 - 51, 31.12.2022
https://doi.org/10.29228/eng.pers.66826

Abstract

In In this study, the effect of composite laying angle on the natural frequency values of a long and flexible cover made of laminated composite material was investigated. Investigation of the effect of the laying angle, a composite cover with rib design with the topography optimization method was used. The cover design used in the study is an industrial design product and has producible features. A design with a total of 20 different laying angles has been made on the ribbed and ribless parts of the composite cover. Care was taken that the selected laying angles do not interfere with manufacturability. Designs with different laying angles are modeled with the ANSYS ACP module. The modal analysis of the created designs was carried out with the finite difference method in the ANSYS program environment. As a result of the modal analysis, natural frequency values of mode 1, mode 2, mode 3, mode 4, mode 5 and mode 6 of these designs were obtained. It was concluded that the best mode 2 natural frequency values (45°,-45°,45°,-45°,45°,-45°,45°) were obtained by using the degree of laying angles. In this design, mode 2 has a natural frequency value of 12.2 Hz, mode 3 33 Hz, mode 4 40.9 Hz, mode 5 57.8 Hz and mode 6 82.7 Hz. In this design, mode 2 has a natural frequency value of 12.2 Hz, mode 3 33 Hz, mode 4 40.9 Hz, mode 5 57.8 Hz and mode 6 82.7 Hz.

References

  • 1. Vo-Duy, T., Duong-Gia, D., Ho-Huu, V., Vu-Do, H. C., Nguyen-Thoi, T. (2017). Multi-objective optimization of laminated com-posite beam structures using NSGA-II algorithm. Composite Structures, 168, 498-509.
  • 2. Ebrahimi, F., Nouraei, M., & Dabbagh, A. (2020). Modeling vi-bration behavior of embedded graphene-oxide powder-reinforced nanocomposite plates in thermal environment. Mechanics Based Design of Structures and Machines, 48(2), 217-240.
  • 3. Solmaz, M. Y., Mustafa, Gür. Tabakalı Kompozit Plakalarda Takviye Malzemesi ve Oryantasyon Açısının Gerilme Analizine Etkisi. Fırat Üniversitesi Doğu Araştırmaları Dergisi, 6(1), 16-25.
  • 4. Aydin, L., Artem, H. S., Savran, M. Genetik Algoritma Kullanılarak Boyutsal Kararlı Kompozit Malzemelerin Optimi-zasyonu. Afyon Kocatepe Üniversitesi Fen Ve Mühendislik Bilimleri Dergisi, 17(3), 1136-1145. DOİ: 10.5578/fmbd.64041
  • 5. Kaymaz, K., Zengin, B., Aşkın, M., Taşkaya, S. (2018). Investi-gation of Mechanical Stresses on Sandwich Composite Layers According to The Pressure By Making Use of Ansys Software. Gümüşhane Üniversitesi Fen Bilimleri Enstitüsü Dergisi,(CMES 2018 Sempozyum Ek sayısı), 79-93.
  • 6. Küçükrendeci, İ. (2017). Nonlinear Vibration Analysis of Com-posite Plates on Elastic Foundations in Thermal Environments. Afyon Kocatepe Üniversitesi Fen Ve Mühendislik Bilimleri Dergisi, 17(2), 790-796. DOI: 10.5578/fmbd.57619
  • 7. Karaman M., Öztürk E. (2021). Analysis of the Behavior of a Cross-Type Hydraulic Outrigger and Stabilizer Operating Under Determined Loads. Engineering Perspective 1 (1): 22-29, 2021. http://dx.doi.org/10.29228/sciperspective.49248
  • 8. Turan, M. (2007). Tabakalı kompozit malzemelerde yüksek hızlı darbe hasarı. Mühendis ve Makina, 48(575), 3-8.
  • 9. Saraçoğlu, M. H., & Gürlek, M. E. (2020). Tabakalı Kompozit Kirişlerin Eğilme Analizi. Journal of Scientific Reports-B, Num-ber 1, 19-33, June 2020
  • 10. Çevik, M. (2007). Basit mesnetli simetrik çapraz ve açılı tabakalı kompozit kirişlerin etkileşimli serbest titreşimleri. 15. Ulusal Mekanik Kongresi, 03-07 Eylül, Isparta.
  • 11. Hüseyinoğlu, M., Tayfun, Abut. (2019). İki Ucu Ankastre U Çerçeve Yapının Modal Analizi. Muş Alparslan Üniversitesi Fen Bilimleri Dergisi, 7(2), 657-665. https://doi.org/10.18586/msufbd.637678
  • 12. Yıldırım, Ş., Emir, E. S. İ. M. (2019). Çift Köprülü Aski Tip Kren Sistemlerinin Sonlu Elemanlar Metodu ile Modal Analizi. Konya Mühendislik Bilimleri Dergisi, 7, 975-988.
  • 13. Naskar, S., Mukhopadhyay, T., Sriramula, S., & Adhikari, S. (2017). Stochastic natural frequency analysis of damaged thin-walled laminated composite beams with uncertainty in microme-chanical properties. Composite Structures, 160, 312-334. DOI: 10.36306/konjes.627067
  • 14. Abualnour, M., Houari, M. S. A., Tounsi, A., & Mahmoud, S. R. (2018). A novel quasi-3D trigonometric plate theory for free vi-bration analysis of advanced composite plates. Composite Struc-tures, 184, 688-697.
  • 15. Şakar, G., Yaman, M., Bolat, F. Ç. (2010). Bal peteği sandviç kompozit yapıların dinamik analizi. 2. Ulusal Tasarım İmalat ve Analiz Kongresi, 11-12 Kasım, Balıkesir, 531–540.
  • 16. Atlıhan, G. (2010). Süreksı̇zlı̇k bölgesı̇ne sahı̇p tabakalı kompozı̇t kı̇rı̇şlerı̇n tı̇treşı̇m analı̇zı̇, Doktora Tezi, Pamukkale Üniversitesi Fen Bilimleri Enstitüsü, Pamukkale.
  • 17. Gibson, R. F. (2000). Modal vibration response measurements for characterization of composite materials and structures. Compo-sites Science And Technology, 60, 2769–2780. DOI: 10.1016/S0266-3538(00)00092-0
  • 18. Yesilyurt, I., Gursoy, H. (2015). Estimation of elastic and modal parameters in composites using vibration analysis. Journal of Vi-bration and Control, 21(3), 509-524. DOI: 10.1177/1077546313486275
  • 19. Soni, P. J. and Iyengar, N. G. R. (1983). Optimal design of clamped laminated composite plates. Fibre Science and Technol-ogy, 19 (4), 281-296.
  • 20. Vatangül, E. (2008). Kompozit malzemelerin mekanik özellikle-rinin belirlenmesi ve ansys 10 programı ile ısıl gerilme analizi, Bitirme Projesi, Dokuz Eylül Üniversitesi Mühendislik Fakültesi Makine Mühendisliği Bölümü, İzmir.
  • 21. Baba, A. B. (2013). Delaminasyonlu tabakalı kompozit plakaların burkulma analizi, Yüksek Lisans Tezi, Dokuz Eylül Üniversitesi Fen Bilimleri Enstitüsü, İzmir.
  • 22. Kaw, A. K. (2005). Mechanics of composite materials (Second edition). USA: CRC Press.
  • 23. İnal, O., Balıkoğlu, F., & Ataş, A. (2018). Bolted joints in quasi-unidirectional glass-fibre NCF composite laminates. Composite Structures, 183, 536-544.
  • 24. Inal, O & Atas, A 2018, 'Experimental investigation of pinned joints in NCF Glass-Fibre reinforced composite plates', Journal Of The Faculty Of Engineering And Architecture Of Gazi Uni-versity, vol. 33, no. 4, pp. 1445-1457. https://doi.org/10.17341/gazimmfd.416441
  • 25. Kiani, Y. (2017). Free vibration of carbon nanotube reinforced composite plate on point supports using Lagrangian multipliers. Meccanica, 52(6), 1353-1367. DOI 10.1007/s11012-016-0466-3
  • 26. Zhai, Y., Liang, S. (2017). Optimal lay-ups to maximize loss fac-tor of cross-ply composite plate. Composite Structures, 168, 597-607. http://dx.doi.org/10.1016/j.compstruct.2017.01.019
  • 27. Shao, D., Hu, F., Wang, Q., Pang, F., & Hu, S. (2016). Transient response analysis of cross-ply composite laminated rectangular plates with general boundary restraints by the method of rever-beration ray matrix. Composite Structures, 152, 168-182. http://dx.doi.org/10.1016/j.compstruct.2016.05.035
There are 27 citations in total.

Details

Primary Language English
Subjects Automotive Engineering Materials
Journal Section Articles
Authors

Mehmet Can Katmer This is me

Adnan Akkurt

Tolga Kocakulak

Publication Date December 31, 2022
Published in Issue Year 2022 Volume: 2 Issue: 4

Cite

APA Katmer, M. C., Akkurt, A., & Kocakulak, T. (2022). Investigation of Natural Frequency Values of Composite Cover Design with Different Laying Angles. Engineering Perspective, 2(4), 46-51. https://doi.org/10.29228/eng.pers.66826