Review Article
BibTex RIS Cite

A Comprehensive Review on Stirling Engines

Year 2023, Volume: 3 Issue: 3, 42 - 56, 30.09.2023

Abstract

Stirling engines work with all kinds of heat sources thanks to the external heat supply. It has many advantages over internal combustion engines, especially in terms of noise emissions and pollutant emissions. Since the first Stir-ling engine invented by Robert Stirling, development work continues on it. Considering the problems caused by fossil fuels, Stirling engines are promising in the recovery of solar energy, geothermal energy and waste heat. As a result of the studies carried out from the past to the present, many Stirling engine types, cylinder configurations and drive mechanisms have been designed. In this study, the importance, advantages-disadvantages, usage areas and working principles of Stirling engines are explained. The Stirling cycle has been analyzed in detail. Carnot cycle and Ericsson cycle are mentioned and these three cycles are compared with each other in terms of work and efficiency. Stirling engine classifications, cylinder configurations and drive mechanisms are explained in detail. The design differences, operating characteristics, technological details and structural features of these configurations are examined. The advantages and disadvantages of all these different structures in terms of design, production, cost, power, efficiency, friction, wear, sealing, weight, dead volume, noise and number of parts are stated.

References

  • 1. Stirling, R. (1816). Stirling air engine and the heat regenerator. Patent No: 4081.
  • 2. Organ, A. J. (2014). Stirling cycle engines inner working and design. New York: Wiley Publication, 33-43.
  • 3. Wang, K., Sanders, S. R., Dubey, S., Choo, F. H. and Duan, F. (2016). Stirling cycle engines for recovering low and moderate temperature heat: a review. Renewable and Sustainable Energy Reviews, 62, 89-108.
  • 4. Reader, G. T. (1986). Stirling engine work royal navy. SAE Transactions, 95(4), 394-405.
  • 5. Yuan, Z. S. (1993). Oscillatory flow and heat transfer in a Stir-ling-engine regenerator. PhD. Thesis, Department of Mechani-cal and Aerospace Engineering, Case Western Reserve Univer-sity.
  • 6. Scott, S. J., Holcomb, F. H. and Josefik, N. M. (2013). Distrib-uted electrical-power generation: summary of alternative avail-able technologies. ERDC/CERL SR-03-18. US Army Corps of Engineers, Washington, DC.
  • 7. Walker, G. (1980). Stirling engines. Clarendon Press, Oxford.
  • 8. Çınar, C., Yücesu, S., Topgül, T. and Okur, M. (2005). Beta-type Stirling engine operating at atmospheric pressure. Applied Energy, 81, 351-357.
  • 9. White, M. A., Emigh, S. G. and Riggle, P. (1987). Practical bel-lows seals for Stirling engines. SAE Transactions, 96(5), 3-8.
  • 10. Arslan, T. A. (2021). Rhombic mekanizmalı Beta tipi bir Stir-ling motorunda sıkıştırma oranının motor performansına etkile-rinin sayısal olarak incelenmesi. Yüksek Lisans Tezi, Gazi Ün-iversitesi Fen Bilimleri Enstitüsü, Ankara.
  • 11. Özgören, Y. Ö. and Çetinkaya, S. (2009). Helyum ve havanın iş gazı olarak kullanıldığı Beta tipi bir Stirling motorunun perfor-mansının deneysel olarak incelenmesi. Journal of the Faculty of Engineering and Architecture of Gazi University, 24(2), 221-228.
  • 12. Çınar, C., Topgül, T. and Yücesu, H. S. (2007). Stirling çevrimi ile çalışan Beta tipi bir motorun imali ve performans testleri, Journal of the Faculty of Engineering and Architecture of Gazi University, 22(2), 411-415.
  • 13. Çınar, C., Aksoy, F. and Okur, M. (2013). Design, manufactur-ing and performance tests of a stirling engine with rhombic drive mechanism. Journal of the Faculty of Engineering and Architecture of Gazi University, 28, 795-801.
  • 14. Aksoy, F. (2011). Bir Stirling motoruna güneş enerjisi uygu-lanması. Doktora Tezi, Gazi Üniversitesi Fen Bilimleri Enstitüsü, Ankara.
  • 15. Organ, A. J. (1992). Thermodynamics and gas dynamics of the Stirling cycle machine. New York: Cambridge University Press.
  • 16. Organ, A. J. (1997). The regenerator and the Stirling engine. England: Mechanical Engineering Publications.
  • 17. Walker, G. and Senft, J. R. (1985). Free-piston Stirling engines. Berlin, Heidelberg: Springer.
  • 18. Ross, M. A. (1993). Making Stirling engines: Ross Experimental.
  • 19. Thimsen, D. (2002). Stirling engine assessment, California, USA: EPRI Technical report, 1007317.
  • 20. Rogdakis, E. D., Bormpilas, N. A. and Koniakos, I. K. (2004). A thermodynamic study for the optimization of stable operation of free piston Stirling engines. Energy Conversion and Man-agement, 45(4), 575-593.
  • 21. Boucher, J., Lanzetta, F. and Nika, P. (2007). Optimization of a dual free piston Stirling engine. Applied Thermal Engineering, 27(4), 802-811.
  • 22. Lane, N. W. and Beale, W. T. (2005). Free-piston Stirling de-sign features. Presented at Eighth International Stirling Engine Conference, University of Ancona, Italy.
  • 23. Thombare, D. G. and Verma, S. K. (2008). Technological de-velopment in the Stirling cycle engines. Science Direct Renew-able and Sustainable Energy Reviews, 12, 1-38.
  • 24. Mou, J., Li, W., Li, J. and Hong, G. (2016). Gas action effect of free piston Stirling engine, Energy Conversion and Management, 110, 278-286.
  • 25. Mclean, A. F. (1983). Ceramics potential in automotive power-plants. “Ceramics for High-Performace Applications” III Relia-bility, Springer, 1, 103-121.
  • 26. https://nara.getarchive.net/media/ford-philips-4-215-stirling-engine-8f43ad
  • 27. Cheng, C. H. and Tan, Y. H. (2008). Numerical optimization of a four-cylinder double-acting stirling engine based on non-ideal adiabatic thermodynamic model and SCGM method. Energies, 13(8), 2008.
  • 28. Cheng, C. H., Tan, Y. H. and Liu, T. S. (2021). Experimental and dynamic analysis of a small-scale double-acting four-cylinder α-type Stirling engine. Sustainability, 13, 8442.
  • 29. Alberti, F. and Luigi, C. (2014). Design of a new medium tem-perature Stirling engine for distributed cogeneration applications. Energy Procedia, 57, 321-330.
  • 30. Cheng, C., Yang, H. and Tan, Y. (2022). Theoretical model of a α-type four-cylinder double-acting Stirling engine based on en-ergy method. Energy, 238, 121730.
  • 31. Çınar, C., Aksoy, F. and Erol, D. (2012). The effect of displac-er material on the performance of a low temperature differen-tial Stirling engine. International Journal of Energy Research, 36, 911-917.
  • 32. Erol, D. (2011). Stirling motorlarında kullanılan hareket iletim mekanizmaları, Electronic Journal of Vehicle Technologies, 3(3), 51-74.
  • 33. Kongtragool, B. and Wongwises, S. (2007). Performance of low-temperature differential Stirling engines. Renewable Energy, 32, 547–566.
  • 34. Rizzo J. G. (1997). The Stirling engine manual. Somerset: Cam-den miniature steam services, 1, 43, 153, 155.
  • 35. https://www.msi.com/news/detail/WorldsFirstPowerlessAirCoolero naMotherboardMSIpresentsthequotAirPowerCoolerquot591
  • 36. Senft, J. R. (2004). An introduction to low temperature differ-ential Stirling engines. New York: Moriya Press, 1-37.
  • 37. Ceperley, P. H. (1979). A pistonless Stirling engine-The travel-ing wave heat engine. The Journal of the Acoustical Society of America, 66(5), 1508-1513.
  • 38. Ceperley, P. H. (1985). Gain and efficiency of a short traveling wave heat engine. The Journal of the Acoustical Society of America, 77(3), 1239-1244.
  • 39. Ceperley, P. H. (1978). Traveling wave heat engine. US Patent No: 4114380A.
  • 40. Ceperley, P. H. (1982). Resonant travelling wave heat engine. US Patent No: 4355517A.
  • 41. Backhaus, S. and Swift, G. (2002). New varieties of thermo-acoustic engines. LA-UR-02-2721, 9th International Congress on Sound and Vibration.
  • 42. Swift, G. W. (1992). Analysis and performance of a large ther-moacoustic engine. The Journal of the Acoustical Society of America, 92(3), 1551-1563.
  • 43. Swift, G. W. (1988). Thermoacoustic engines. The Journal of the Acoustical Society of America, 84(4), 1145-1180.
  • 44. West, C. D. (1970). Hydraulic heat engines. AERE-R-6522, Harwell, UK: UKAEA Atomic Energy Research Establishment.
  • 45. West, C. D. (1983). Liquid piston Stirling engines. Van Nos-trand Reinhood Company Inc.
  • 46. Ahmadi, R., Jokar, H. and Motamedi, M. (2018). A solar pres-surizable liquid piston Stirling engine: part 2, optimization and development. Energy, 164, 1200-1215.
  • 47. Çınar, C. (2007). Thermodynamic analysis of an α-type Stirling engine with variable phase angle. Mechanical Energy Science, 221, 949-954.
  • 48. Yücesu, H. S. (1996). Küçük güçlü güneş enerjili bir Stirling motoru tasarımı. Doktora Tezi, Gazi Üniversitesi Fen Bilimleri Enstitüsü, Ankara.
  • 49. Beale, W., Holmes, W., Lewis, S. and Cheng, E. (1973). Free-piston Stirling-engine: a progress report. SAE Paper No. 730647.
  • 50. Arslan, T. A., Solmaz, H., İpci, D. and Aksoy, F. (2023). Inves-tigation of the effect of compression ratio on performance of a Beta type Stirling engine with rhombic mechanism by CFD analysis. Environmental Progress & Sustainable Energy, 2023;e14076.
  • 51. Arslan, T. A., Solmaz, H., ve İpci, D. (2021). Rhombic mekanizmalı Beta tipi bir Stirling motorunun adyabatik şartlarda CFD analizi. International Symposium on Automotive Science and Technology, 2: 537-546, Ankara, Türkiye.
  • 52. Çınar, C. (2001). Gama tipi bir Stirling motorunun tasarımı, imali ve performans analizi. Doktora Tezi, Gazi Üniversitesi Fen Bilimleri Enstitüsü, Ankara.
  • 53. Senft, J. R. (1993). Ringbom Stirling engines. Oxford: Oxford University Press.
  • 54. Walker, G. (1973). Stirling-cycle machines. Oxford: Clarendon Press.
  • 55. Finkelstein, T. and Organ, A. J. (2001). Air engines. Profes-sional Engineering Publishing. ISBN 1-86058-338-5.
  • 56. Meijer, R. J. (1959). The Philips hot gas engine with rhombic drive mechanism. Philips Technical Review, 20, 245-276.
  • 57. Erol, D., Yaman, H. and Doğan, B. (2017). A review develop-ment of rhombic drive mechanism used in the Stirling engines. Renewable and Sustainable Energy Reviews, 78, 1044–1067.
  • 58. Meijer, R. J. (1960). The Philips Stirling thermal engine. Thesis, Technische Hogeschool Delft, 99-103.
  • 59. Aksoy, F. and Çınar, C. (2013). Thermodynamic analysis of a Beta-type Stirling engine with rhombic drive mechanism. Ener-gy Conversion and Management, 75, 319–324.
  • 60. Duan, C., Sun, C., Shu, S., Ding, G., Jing C. and Chang, J. (2015). Similarity design and experimental investigation of a Beta-type Stirling engine with a rhombic drive mechanism. In-ternational Journal of Energy Research, 39, 191–201.
  • 61. Garcia-Canseco, E., Alvarez-Aguirre, A. and Scherpen J. M. A. (2015). Modeling for control of a kinematic wobble yoke Stir-ling engine. Renewable Energy, 75, 808-817.
  • 62. Baran, P., Kukuča, P., Brezáni, M. and Kovalčík, A. (2014). Simulations of nonconvetional desingnes with regard to com-pression ability for use in Stirling engine. Scientific Proceedings XXII Internatşonal Scientific-Technical Conference, ISSN 1310-3946, 65-68.
  • 63. Cheng, C. H., Yang, H. S., Tan, Y. H. and Li, J. H. (2021). Modeling of the dynamic characteristics and performance of a four-cylinder doubleacting Stirling engine. International Journal of Energy Research, 45, 4197–4213.
  • 64. Yaman, H. and Erol, D. (2022). Design, manufacturing and testing of a Stirling Engine with slider-crank mechanism. Inter-national Journal of Engineering Research and Development, 14(1), 10-23.
  • 65. Maki, E. R. and DeHart, A. O. (1971). A new look at swash plate drive mechanisms. SAE Technical Paper, 710829, 12.
  • 66. https://www.stirlingengine.co.uk/d.asp?product=NANOCANNON_ ASS
  • 67. Finkelstein, T. and Organ, A. J. (2004). Air engines the history science and reality of the perfect engine. New York: The Amer-ican Society of Mechanical Engineers.
  • 68. Darlington, R. and Strong, K. (2010). Stirling and hot air en-gines, designing and building experimental model stirling en-gines. England: Crowood Press.
  • 69. Clucas, D. M. (1997). Wobble yoke assembly, US Patent No: 563035.
  • 70. https://www.yanmar.com/en_th/about/technology/technical_review /2017/0127_5.html
  • 71. Hirata, K. And Iwamoto, I. (1999). Study on design and per-formance prediction methods for miniaturized Stirling engine. Technology Conference & Exposion, SAE, 444-449.
  • 72. Hirata, K., Kagawa, N., Takeuchi, M., Yamashita, I., Ishhiki, N. And Hamaguchi, K. (1996). Test results of applicative 100 W Stirling engine. Proceedings of the 31st Intersociety Energy Conversion Engineering Conference, 2, 1259-1264.
There are 72 citations in total.

Details

Primary Language English
Subjects Experimental Methods in Fluid Flow, Heat and Mass Transfer, Electrical Energy Generation (Incl. Renewables, Excl. Photovoltaics)
Journal Section Articles
Authors

Turan Alp Arslan

Tolga Kocakulak

Publication Date September 30, 2023
Published in Issue Year 2023 Volume: 3 Issue: 3

Cite

APA Arslan, T. A., & Kocakulak, T. (2023). A Comprehensive Review on Stirling Engines. Engineering Perspective, 3(3), 42-56. https://doi.org/10.29228/eng.pers.66847