Research Article
BibTex RIS Cite

Thermal Modeling of Solid Hydrogen Storage in a LaNi5 Metal Hydrid Tank

Year 2024, Volume: 3 Issue: 1, 32 - 39, 31.03.2024

Abstract

This paper presents a detailed 3D model of a solid hydrogen storage tank based on metal hydride LaNi5 technology, utilizing COMSOL Multiphysics 6.1 software. The model takes into account the coupling of momentum, heat, mass and energy transfer within the LaNi5 metal hydride during hydrogen absorption. The main objective of the study is to analyze the temporal evolution of temperature and pressure within the tank as hydrogen is absorbed. In addition, the paper investigates the effectiveness of a cooling strategy involving the integration of cooling tubes into the tank configuration. This approach aims to enhance the thermal management of the storage system by dissipating excess heat generated during hydrogen absorption.
Simulation results demonstrate the changes in temperature and pressure occurring within the LaNi5 metal during the process of hydrogen absorption. The implementation of an air-based cooling system emerges as an effective means of regulating the temperature of the storage tank, thus creating optimal conditions for hydrogen absorption processes. This understanding is essential to the development of efficient thermal management solutions for solid hydrogen storage technologies. By comprehensively analyzing the thermal behavior of the LaNi5 metal hydride tank, this numerical study suggests that the efficient design of storage system is very important for rapid absorption of hydrogen.

References

  • 1. Mazloomi, K., & Gomes, C. (2012). Hydrogen as an energy car-rier: Prospects and challenges. Renewable and Sustainable Energy Reviews, 3024 3033.
  • 2. Maestre, V., Ortiz, A., & Ortiz, I. (2021). Challenges and pro-spects of renewable hydrogen-based strategies for full. Renewa-ble and Sustainable Energy Reviews, 111628.
  • 3. Gurz, M., Ertugru, B., Hames, Y., & Kaya, K. (2017). The meet-ing of hydrogen and automotive: A review. International Journal of Hydrogen Energy, 23334-23346.
  • 4. Aminudin, M., Kamarudin, S., Lim, B., Majilan, E., Masdar, M., & Shaari, N. (2023). An overview: Current progress on hydrogen fuel cell vehicles. International Journal of Hydrogen Energy, 4371-4388.
  • 5. Haidar, F., Arora, D., Soloy, A., & Bartoli, T. (2024). StudyProton-Exchange Membrane Fuel Cell Degradation and its Counter Strategies: Flooding/drying, Cold Start and Carbon Monoxide Poisoning. International Journal of Automotive Science And Technology, 8(1), 96-109.
  • 6. Falfari, S., Cazzoli, G., Mariani, V., & Bianchi, G.-M. (2023). Hydrogen Application as a Fuel in Internal Combustion Engines. Énergies, 2545.
  • 7. Younas, M., Shafique, S., Hafeez, A., Javed, F., & Rehman, F. (2022). An Overview of Hydrogen Production: Current Status, Potential, and Challenges. Fuel, 123317.
  • 8. Usman, M. (2022). Hydrogen storage methods: Review and current status. Renewable and Sustainable Energy Reviews, 112743.
  • 9. Rathi, B., Agarwal, S., Kumar, M., & Jain, A. (2023). Handbook of Energy Materials. Singapore: Springer Nature Singapore.
  • 10. Isselhorst, A. (1995). Heat and mass transfer in coupled hydride reaction beds. Journal of Alloys and Compounds, 231(1-2), 871-879.
  • 11. Boukhari, A., & Bessaïh, R. (2015). Numerical heat and mass transfer investigation of hydrogen absorption in an annulus-disc reactor. International Journal of Hydrogen Energy, 40(39), 13708-13717.
  • 12. Jemni, A., & Ben Nasrallah, S. (1995). Study of two-dimensional heat and mass transfer during absorption in a metal-hydrogen reactor. International Journal of Hydrogen Energy, 20(1), 43-52.
  • 13. Jemni, A., Ben Nasrallah, S., & Lamloumi, J. (1999). Experimental and theoretical study of ametal–hydrogen reactor. Journal international de l'énergie hydrogène, 24(7), 631-644.
  • 14. Chalet, D., Lesage, M., Cormerais, M., & Marimbordes, T. (2017). Nodal modelling for advanced thermal-management of internal combustion engine. Applied Energy, 190, 99-113.
  • 15. Chabane, D., Harel, F., Djerdir, A., Ibrahim, M., Candusso, D., Elkedim, O., & Feninèche, N. (2017). Influence of the key parameters on the dynamic behavior of the hydrogen absorption by LaNi5. International Journal of Hydrogen Energy, 42(2), 1412-1419.
  • 16. Chaise, A., De Rango, P., Marty, P., & Fruchart, D. (2010). Experimental and numerical study of a magnesium hydride tank. International Journal of Hydrogen Energy, 35(12), 6311-6322.
  • 17. Chandra, S., Sharma, P., Muthukumar, P., & Tatiparti, S. (2020). Modeling and numerical simulation of a 5 kg LaNi5-based hydrogen storage reactor with internal conical fins. International Journal of Hydrogen Energy, 45(15), 8794-8809.
  • 18. Askri, F., Ben Salah, M., & Ben Nasrallah, S. (2009). Heat and mass transfer studies on metal-hydrogen reactor filled with MmNi4.6Fe0.4. International Journal of Hydrogen Energy, 34(16), 6705-6711.
  • 19. Kumar Phate, A., Prakash Maiya, M., & Srinivasa Murthy, S. (2007). Simulation of transient heat and mass transfer during hydrogen sorption in cylindrical metal hydride beds. International Journal of Hydrogen Energy, 32(12), 1969-1981.
  • 20. Ben Nasrallah, S., & Jemni, A. (1997). Heat and mass transfer models in metal-hydrogen reactor. International Journal of Hydrogen Energy, 22(1), 67-76.
  • 21. Sandrock, G., & Thomas , G. (2001). The IEA/DOE/SNL on-line hydride databases. Applied Physics, 72, 153–155.
  • 22. Chabane, D. (2017). Gestion énergétique d'un ensemble réservoir d'hydrogène à hydrure et une pile à combustible PEM. Université de technologie de Belfort-Montbéliard .
There are 22 citations in total.

Details

Primary Language English
Subjects Electrical Energy Storage, Hybrid and Electric Vehicles and Powertrains
Journal Section Articles
Authors

Mohand Ouyahia Bousseksou

Yucai Lin This is me

Publication Date March 31, 2024
Submission Date January 7, 2024
Acceptance Date March 14, 2024
Published in Issue Year 2024 Volume: 3 Issue: 1

Cite

APA Bousseksou, M. O., & Lin, Y. (2024). Thermal Modeling of Solid Hydrogen Storage in a LaNi5 Metal Hydrid Tank. Engineering Perspective, 3(1), 32-39. https://doi.org/10.29228/eng.pers.75265