Review Article
BibTex RIS Cite

Magnetocaloric Cooling for Hybrid/Hydrogen and Electric Vehicle Cabin and Powertrain Components

Year 2025, Volume: 4 Issue: 1, 9 - 20, 31.03.2025

Abstract

The magnetocaloric cooling system is a promising alternative to traditional refrigeration systems that rely on the compression and expansion of harmful refrigerant gases. Utilizing the magnetocaloric effect, these systems can efficiently provide heating and cooling for a wide range of applications. One particularly significant application of this technology is in the air conditioning of electric vehicles and the thermal management of powertrain components.
This study presents a Matlab Simulink model of the powertrain, alongside a COMSOL model of the permanent magnet, specifically designed for hybrid and electric car applications. The Matlab Simulink model simulates the dynamic behavior of the vehicle's powertrain, integrating the magnetocaloric cooling system to analyze its impact on performance and efficiency. This allows for a comprehensive evaluation of how the system can improve energy efficiency and thermal regulation in electric vehicles. Additionally, the COMSOL model focuses on the detailed behavior of the permanent magnet used in the magnetocaloric cooling system. This model provides insights into the magnetic field distribution and its interaction with the magnetocaloric materials, which are critical for optimizing the cooling cycle and enhancing overall system performance.
To ensure the accuracy and reliability of the simulations, some interpolated experimental data were used. This data helps in refining the models, ensuring that they closely represent real-world scenarios and behaviors. By combining these advanced modeling techniques, the study aims to demonstrate the feasibility and benefits of implementing magnetocaloric cooling systems in electric and hybrid vehicles, potentially leading to more sustainable and efficient automotive thermal management solutions.

References

  • 1. Torregrosa-Jaime, B., Corberán, J. M., Vasile, C., Muller, C., & Risser, M. (2014). Sizing of a reversible magnetic heat pump for the automotive industry. International Journal of Refrigeration, 37, 156-164. https://doi.org/10.1016/j.ijrefrig.2013.06.018
  • 2. Achkar, G. E., B. Liu, & R. Bennacer. (2019). Numerical study on the thermohydraulic performance of a reciprocating room temperature active magnetic regenerator. E3S Web Conf, 128, 07001. https://doi.org/10.1051/e3sconf/201912807001
  • 3. Broughton, J., Vanessa Smet, Rao R. Tummala, & Yogendra K. Joshi. (2018). Review of Thermal Packaging Technologies for Automotive Power Electronics for Traction Purpose. Journal of Electron Packaging, 140, 040801. https://doi.org/10.1115/1.4040828
  • 4. C Vasile, & C Müller. (2006). Innovative design of a magnetocaloric system. International Journal of Refrigeration, 29, 1318-1326. https://doi.org/10.1016/j.ijrefrig.2006.07.016
  • 5. T. Lehy et G. Willems. (1976). Population Kinetics of Antral Gastrin Cells in the Mouse. Gastroenterology, 71, 614-619. https://doi.org/10.1016/S0016-5085(76)80552-5
  • 6. Lionte, S., Carmen Vasile, & Monica Siroux . (2014). La réfrigération magnétique : technologie innovante. COFRET'14- PF3-041, 14. https://doi:10.13140/2.1.3946.5767
  • 7. Lee, S. J., J. M. Kenkel, V. K. Pecharsky, & D. C. Jiles . (2002). Permanent magnet array for the magnetic refrigerator. Journal of Applied Physics, 91, 8894. http://doi.org/10.1063/1.1451906
  • 8. Okamura, T., Kazuhiko Yamada, Naoki Hirano, Naoki Hirano, & Shigeo Naga. (2006). Performance of a room-temperature rotary magnetic refrigerator. International Journal of Refrigeration, 29, 1327-1331. http://10.1016/j.ijrefrig.2006.07.020.
  • 9. Nouri, K., M. Saidi, L. Bessais, & M. Jemmali. (2021). Structural, magnetic and magnetocaloric study of Sm 2 Fe 17−x Ni x (x = 0, 0.25, 0.35 and 0.5) compounds. Applied Physics, 127, 442. https://doi.org/10.1007/s00339-021-04546-1
  • 10. Nouri, K., T. Bartoli, A. Chrobak, J. Moscovici , & L. Bessais . (2018). Magnetism and Hyperfine Parameters in Iron Rich Gd2Fe17-xSix Intermetallics. Journal of Electronic Materials, 47, 3836–3846. https://doi.org/10.1007/s11664-018-6256-z
  • 11. Bouzidi, W., Bartoli, T., Sedek, R., Bouzidi, A., Moscovici, J., & Bessais, L. (2021). Low-field magnetocaloric effect of NdFe _ 11 Ti NdFe 11 Ti and SmFe _ 10 V _ 2 SmFe 10 V 2 compounds. Journal of Materials Science: Materials in Electronics, 32, 10579-10586. https://doi.org/10.1007/s10854-021-05713-z
  • 12. Pecharsky, V. K., & K. A. Gschneidner, Jr. (1997). Giant Magnetocaloric Effect in Gd5(Si2Ge2). Physical Review Letters, 78, 4494-4497. https://doi.org/10.1103/PhysRevLett.78.4494
  • 13. WadaY, H., & Y. Tanabe. (2001). Giant magnetocaloric effect of MnAs1−xSbx. 79, 3302-3304. https://doi.org/10.1063/1.1419048
  • 14. Hu, F.-x., Bao-gen Shen, Ji-rong Sun, Zhao-hua Cheng, Guang-hui Rao, & Xi-xiang Zhang. (2001). Influence of negative lattice expansion and metamagnetic transition on magnetic entropy change in the compound LaFe11.4Si1.6. Applied Physics Letters, 78, 3675-3677. https://doi.org/10.1063/1.1375836
  • 15. Tegus, O., E. Brück, K H J. Buschow, & F R de Boer. (2002). Transition-metal-based magnetic refrigerants for room-temperature applications. 415, 150–152. https://doi.org/10.1038/415150a
  • 16. Zou, J. D., H. Wada, B. G. Shen, J. R. Sun, & W. Li. (2008). Giant magnetocaloric effect and soft-mode magneto-structural phase transition in MnAs. Europhysics Letters, 81, 47002. https://doi:10.1209/0295-5075/81/47002
  • 17. Duchoň, F., Andrej Babinec , Martin Kajan, Peter Beňo , Martin Florek, Tomáš Fico, & Ladislav Jurišica. (2014). Path Planning with Modified a Star Algorithm for a Mobile Robot. Procedia Engineering, 96, 59-69. https://doi.org/10.1016/j.proeng.2014.12.098
  • 18. Jaballah, H., Kamel Nouri, Najeh Mliki, Lotfi Bessais, & Mosbah Jemmali. (2022). Investigation of Magnetic Entropy Change in Intermetallic Compounds SmNi3–xFex Based on Maxwell Relation and Phenomenological Model. Crystals, 12, 481. https://doi.org/10.3390/cryst12040481
  • 19. Fraga, G. L., Paulo Pureur, & Lisandro Pavie Cardoso. (2010). Impedance and initial magnetic permeability of gadolinium. Journal of Applied Physics, 107, 053909. https://doi.org/10.1063/1.3288696
There are 19 citations in total.

Details

Primary Language English
Subjects Hybrid and Electric Vehicles and Powertrains
Journal Section Articles
Authors

Mohand Ouyahia Bousseksou

Kamal Nouri This is me

Thomas Bartoli This is me

Wassim Bouzidi This is me

Lotfi Bessais This is me

Publication Date March 31, 2025
Submission Date July 31, 2024
Acceptance Date December 16, 2024
Published in Issue Year 2025 Volume: 4 Issue: 1

Cite

APA Bousseksou, M. O., Nouri, K., Bartoli, T., Bouzidi, W., et al. (2025). Magnetocaloric Cooling for Hybrid/Hydrogen and Electric Vehicle Cabin and Powertrain Components. Engineering Perspective, 4(1), 9-20. https://doi.org/10.29228/eng.pers.77695