Research Article
BibTex RIS Cite

Early Diagnostics of Alloys For Spinodal Decomposition: A Case of Preventive Prediction of Phase Delamination in an Irregular Fe-Cr-C Solid Solution (The Design Stage)

Year 2025, Volume: 5 Issue: 4, 183 - 193
https://doi.org/10.64808/engineeringperspective.1753602

Abstract

The article presents an improved approach to thermodynamic modelling and early, preventive prediction of spinodal decomposition processes with phase delamination of irregular three-component α - solid solutions into separate equilibrium, immiscible phases. Using the obtained model, it is possible to analytically predict the critical concentration-temperature conditions under which the noted phase segregation can be induced, contributing to the premature aging of metallic materials and reducing the operational reliability of machine parts made from them. Consequently, the proposed approach will allow in advance, even at the stage of development of the alloy, to eliminate the risk associated with its structural-phase decay during the operation of the product made from it. The results of calculations obtained on a widely used model alloy of the Fe-Cr-C system are presented. It has been established that the spinodal decomposition of the noted three-component stainless heat-resistant solid solution can lead to concentration stratification into the following three equilibrium phases, with the content of elements in molar parts: 1) Fe=0.14, Cr=0.29, C=0.57; 2) Fe=0.53, Cr=0.29, C=0.18; 3) Fe=0.14, Cr=0.68, C=0.18. Such phase segregation can be initiated in a solid solution with an initial content of these elements of 0.72, 0.25, and 0.03 mol, in the case of its rapid forced cooling to a critical temperature of 342 K for this system, since this leads to the maximization of free energy and transfers it in a thermodynamically non-equilibrium state. As a preventive measure to avoid the process of spinodal decomposition, seeking to zeroing the free energy of the system by its concentrative enriched or depleted delamination and, consequently, microstructural embrittlement, it is recommended to technologically exclude the probability of producing and operating an alloy with a predetermined non-equilibrium chemical composition and critical extent of forced cooling.

References

  • 1. Morinaga, M. (2019). 2 - Theory for Alloy Design. Editor(s): Masahiko Morinaga, In Materials Today. A Quantum Approach to Alloy Design. Elsevier, 2019, 9-17. https://doi.org/10.1016/B978-0-12-814706-1.00002-9
  • 2. Ni, B., Glaser, B. & Taheri-Mousavi, S.M. (2025). End-to-end pre-diction and design of additively manufacturable alloys using a genera-tive AlloyGPT model. npj Comput Mater 11, 294. https://doi.org/10.1038/s41524-025-01768-2
  • 3. Han, S.Z., Choi, E.-A., Lim, S.H., Kim, S., Lee, J. (2021). Alloy design strategies to increase strength and its trade-offs together. Pro-gress in Materials Science, 117, 100720. https://doi.org/10.1016/j.pmatsci.2020.100720
  • 4. Guoxun, L. (2024). Spinodal Decomposition. In: Kuangdi, X. (eds) The ECPH Encyclopedia of Mining and Metallurgy. Springer, Singa-pore. https://doi.org/10.1007/978-981-99-2086-0_932
  • 5. Sankar, B., Vinay, C., Vishnu, J. et al. (2023). Focused Review on Cu–Ni–Sn Spinodal Alloys: From Casting to Additive Manufactur-ing. Met. Mater. Int. 29, 1203–1228. https://doi.org/10.1007/s12540-022-01305-6
  • 6. Ustinovshikov, Y. (2019). The Ordering-Phase Separation Transition in Alloys. Cambridge Scholars Publishing.
  • 7. Gong, T., Cao, S., Hao, W. et al. (2025). Modelling Microsegrega-tion of Binary Alloy During Solidification. Acta Metall. Sin. (Engl. Lett.) 38, 1628–1636. https://doi.org/10.1007/s40195-025-01884-4
  • 8. Tayonl, W.A., Crooks, R.E., Domack, M.S.; Wagner, J.A., Beaudoin, A.J., McDonald, R.J. (2009). Mechanistic Study of Delamination Fracture in Al-Li Alloy 0458 (2099). 12th International Conference on Fracture Damage and Micro-Mechanics Symposium. The Westin Ottawa, Canada. NASA Technical Reports Server (NTRS) 20090026993, 1-10.
  • 9. Liu, Ch., Davis, A., Fellowes, J., Prangnell, Ph.B., Raabe, D., Shanthraj, P. (2022). CALPHAD-informed phase-field model for two-sublattice phases based on chemical potentials: η-phase precipita-tion in Al-Zn-Mg-Cu alloys. Acta Materialia, 226, 117602. https://doi.org/10.1016/j.actamat.2021.117602
  • 10. Kim, B., Sietsma, J., & Santofimia, M. J. (2019). Theoretical Aspects of Spinodal Decomposition in Fe-C. Metall Mater Trans A 50, 1175-1184. https://doi.org/10.1007/s11661-018-5094-1
  • 11. Guskov, A. (2017). Spinodal decomposition of solutions during crystallization. Journal for the Basic Principles of Diffusion Theory, Experiment and Application: Special Issue - Diffusion Fundamentals VII - Evolution or Degradation? 1, 1-9. https://doi.org/10.62721/diffusion-fundamentals.30.990
  • 12. Davidoff, E., Galenko, P.K., Herlach, D.M., Kolbe, M., Wanderka, N. (2013). Spinodally decomposed patterns in rapidly quenched Co–Cu melts. Acta Materialia, 61 (4), 1078-1092. https://doi.org/10.1016/j.actamat.2012.10.010
  • 13. Macchi, J., Nakonechna, O., Henry, R., Castro, C., Edalati, K., Geuser, F., Sauvage, X. Lefebvre, W. (2024). Microstructural design by combining nanograins and spinodal decomposition in a Fe-Cr al-loy. Scripta Materialia, 252, 116247. https://doi.org/10.1016/j.scriptamat.2024.116247
  • 14. Lopez-Hirata, V.M., Avila-Davila, E.O., Saucedo-Muñoz, M.L., Villegas-Cardenas, J.D., Soriano-Vargas, O. (2017). Analysis of Spinodal Decomposition in Al-Zn and Al-Zn-Cu Alloys Using the Nonlinear Cahn-Hilliard Equation. Materials Research, 20(3), 639-645. http://dx.doi.org/10.1590/1980-5373-MR-2015-0373
  • 15. Vaajamo, I., Johto, H. and Taskinen, P. (2013). Solubility study of the copper-lead system. International Journal of Materials Research, 104 (4), 372-376. https://doi.org/10.3139/146.110876
  • 16. Sanin, V.V., Filonov, M.R., Yukhvid, V.I. et al. (2020). Production of the 70% Cu–30% Fe Alloy by SHS Metallurgy and Electrometal-lurgy: Comparative Analysis of Microstructures. Russ. J. Non-ferrous Metals 61, 119–125. https://doi.org/10.3103/S1067821220010137
  • 17. Moriyama, J., Yamaguchi, M., Takakuwa, O. (2024). Effects of an-tagonistic interaction between Cr and Ni on hydrogen solubility in a Fe-Cr-Ni ternary austenitic system: A first-principles calculation. Ma-terials Today Communications, 40, 110059. https://doi.org/10.1016/j.mtcomm.2024.110059
  • 18. Sun, Zh., Hao, Sh., Duan, H., Zhu, Sh., Wang, D., Li, L., Du, K. (2025). Microstructure, strength and corrosion resistance in an Al-Zn-Mg-Cu alloy after artificial aging and subsequent long-term natu-ral aging. Journal of Alloys and Compounds, 1036, 181915. https://doi.org/10.1016/j.jallcom.2025.181915
  • 19. Kroupa, A., Zobač, O. & Richter, K.W. (2021). The thermodynamic reassessment of the binary Al–Cu system. Journal of Materials Sci-ence, 56, 3430–3443. https://doi.org/10.1007/s10853-020-05423-7
  • 20. Ardell, A.J. The Equilibrium α (Al-Li Solid Solution) and Metasta-ble δ′ (Al3Li) Phase Boundaries in Aluminum–Lithium Alloys. (2023). Journal of Phase Equilibria and Diffusion, 44, 255–268. https://doi.org/10.1007/s11669-023-01039-x
  • 21. Fratzl, P., Weinkamer, R. (2004). Phase Separation in Binary Alloys - Modeling Approaches. In: Fischer, F.D. (eds) Moving Interfaces in Crystalline Solids. CISM International Centre for Mechanical Scienc-es, vol 453. Springer, Vienna. https://doi.org/10.1007/3-211-27404-9_2
  • 22. Mandolesi, B., Iandiorio, C., Belardi, V.G., Vivio, F. (2025). Spi-nodal decomposition-inspired metamaterial: Tailored homogenized elastic properties via the dimensionless Cahn-Hilliard equation. Euro-pean Journal of Mechanics - A/Solids, 112, 105615. https://doi.org/10.1016/j.euromechsol.2025.105615
  • 23. Zeng, Q., Hui, W., Zhang, Y., Liu, X., Yao, Z. (2023). Very high-cycle fatigue performance of high carbon-chromium bearing steels with different metallurgical qualities. International Journal of Fatigue, 172, 107632. https://doi.org/10.1016/j.ijfatigue.2023.107632
  • 24. Luneville, L., Tissot, O., Pareige, C., Simeone; D. (2024). Modeling phase separation in solids beyond the classical nucleation theory: Ap-plication to FeCr. The Journal of Chemical Physics, 161 (14), 144708. https://doi.org/10.1063/5.0226979
  • 25. Fang, Y., Hack, K. & Lippmann, S. (2025). Reassessment of Al-Cu System Considering Metastable Extensions of Solid/Liquid Phase Equilibria. Journal of Phase Equilibria and Diffusion, 46, 462–470. https://doi.org/10.1007/s11669-025-01208-0
  • 26. Jacob A., Sobotka E., Povoden-Karadeniz E. (2025). Thermodynamic modeling of multicomponent MX phases (M= Nb,Ti,V; X=C,N) in steel. Calphad, 88, 102795. https://doi.org/10.1016/j.calphad.2024.102795
  • 27. Sterkhova, I. V., Kamaeva, L. V., Chtchelkatchev, N. M., & Lad`yаnov, V. I. (2022). Effect of carbon on the phase formation in Fe85-xCr15Cx (x = 10-17) melts at low cooling rates. Journal of Alloys and Compounds, 894, 162507. https://doi.org/10.1016/j.jallcom.2021.162507
  • 28. Harwarth, M., Brauer, A., Huang, Q., Pourabdoli, M., & Mola, J. (2021). Influence of Carbon on the Microstructure Evolution and Hardness of Fe-13Cr-xC (x = 0-0.7 wt.%) Stainless Steel. Materials. 14(17), 5063. https://doi.org/10.3390/ma14175063
  • 29. Hu, M., Tan, Q., Knibbe, R., Xu, M., Jiang, B., at. Al. (2023). Re-cent applications of machine learning in alloy design: A review. Mate-rials Science and Engineering: R: Reports, 155, 100746. https://doi.org/10.1016/j.mser.2023.100746
  • 30. Jia, G., Li, Y., & Ding W. (2023). Alloy composition and process design based on thermodynamic and kinetic simulation: The case of medium Mn steel. Calphad, 82, 102601, https://doi.org/10.1016/j.calphad.2023.102601
  • 31. Wen, S., Sun, Y., & Chen, X. (2025). Numerical Modelling on Me-tallic Materials. Metals, 15(4), 423. https://doi.org/10.3390/met15040423
  • 32. NouraniNiaki, K., Uddagiri, M., Isidorio, D., Shchyglo. O., & Stein-bach, I. (2025). Phase Field Simulation of Al-Fe-Mn-Si Quaternary Eutectic Solidification. Metals, 15(2), 135. https://doi.org/10.3390/met15020135
  • 33. Duman, M., Celik, F.A. (2024). Investigation of the Phase Mecha-nism Behaviors of Fe-Cr-Ni Alloy by Molecular Dynamics Simula-tion. Journal of Science, 37(3), 1540-1550. https://doi.org/10.35378/gujs.1297719
  • 34. Kalyanam, S., Beaudoin, A. J., Dodds, R. H., & Barlat, F. (2009). Delamination cracking in advanced aluminum–lithium alloys – Exper-imental and computational studies. Engineering Fracture Mechanics, 76(14), 2174-2191. https://doi.org/10.1016/j.engfracmech.2009.06.010
  • 35. Wang, J., Zhou, X., Thompson, G. E., Hunter, J. A., & Yuan, Y. (2015). Delamination of near-surface layer on cold rolled AlFeSi al-loy during sheet forming. Materials Characterization, 99, 109-117. https://doi.org/10.1016/j.matchar.2014.11.011
  • 36. Andreu, A., Kim, S., Kim, I., Kim, J-H., Noh, J., Lee, S., Lee, W., Su P-Ch., & Yoon Y-J. (2024). Processing Challenges and Delamina-tion Prevention Methods in Titanium-Steel DED 3D Printing. Inter-national Journal of Precision Engineering and Manufacturing-Green Technology, 11, 1663-1679. https://doi.org/10.1007/s40684-024-00598-9
  • 37. Chao, J., Capdevila-Montes, C., & González-Carrasco J. L. (2009). On the delamination of FeCrAl ODS alloys. Materials Science and Engineering: A, Vol. 515, 1-2, 190-198. https://doi.org/10.1016/j.msea.2009.03.017
  • 38. Rudraraju, S., Van der Ven, A. & Garikipati, K. (2016). Mechano-chemical spinodal decomposition: a phenomenological theory of phase transformations in multi-component, crystalline solids. npj Comput Mater 2, 16012. https://doi.org/10.1038/npjcompumats.2016.12
  • 39. Delafosse, D. (2012). 9 - Hydrogen effects on the plasticity of face centred cubic (fcc) crystals. Editor(s): Richard P. Gangloff, Brian P. Somerday. In Woodhead Publishing Series in Metals and Surface Engineering, Gaseous Hydrogen Embrittlement of Materials in Ener-gy Technologies, Woodhead Publishing, 1, 247-285. https://doi.org/10.1533/9780857095374.2.247
  • 40. Balueva, A. V., Dashevskiy, I. N., & Magana, J. (2020). A New Model for Hydrogen-Induced Crack (HIC) Growth in Metal Alloy Pipelines Under Extreme Pressure. Procedia Structural Integrity, 28, 873-885. https://doi.org/10.1016/j.prostr.2020.11.056
  • 41. Arnoult, X., Ružicková, M., Kunzová, K., & Materna, A. (2015). Short review: Potential impact of delamination cracks on fracture toughness of structural materials. Fracture and Structural Integrity, 10(35), 509-522. https://doi.org/10.3221/IGF-ESIS.35.57
  • 42. Huang, T., Bobyr, M. (2023). A Review of Delamination Damage of Composite Materials. Journal of Composites Science, 7(11), 468. https://doi.org/10.3390/jcs7110468
  • 43. Bai, K., Ng, Ch. K., Lin, M., Cheng, B., Zeng, Y., Wuu, D., Lee, J. J., Teo, S. L., Ng, S. R., Tan, D. Ch., Wang, P., Aitken, Z., & Zhang., Y-W. (2023). Unexpected spinodal decomposition in as-cast eutectic high entropy alloy Al30Co10Cr30Fe15Ni15. Materials & Design, 236, 112508. https://doi.org/10.1016/j.matdes.2023.112508
  • 44. Ding, X., Zhang, Sh., Chen, R., Ma, X., Hu, Sh., Zhang, Y., & Guo, J. (2023). Enhanced hydrogen storage properties of Ti40-xV45Zr15Crx alloys by dual-phase nanostructures of eutectic and spinodal decom-position. Journal of Energy Storage, 73, Part D, 109211. https://doi.org/10.1016/j.est.2023.109211
  • 45. Gordeziani, G., Kharati, R., Loladze, T., Kenchiashvili, N. and Kan-teladze, N. (2024). Two phase separation of irregular solid solution of Fe-Cr system. Science and technologies. 1(744), 41-45. http://doi.org/10.36073/0130-7061 (in Georgian)
  • 46. Umantsev, A. (2023). Spinodal Decomposition in Binary Systems. In: Field Theoretic Method in Phase Transformations. Lecture Notes in Physics, vol 1016, 95-100. Springer, Field Theoretic Method in Phase Transformations. https://doi.org/10.1007/978-3-031-29605-5_6
  • 47. Boytsova, O. V., Makarevich, O. N., Sharovarov, D. I., & Makare-vich, A. M. (2022). Spinodal Decomposition in the Chemistry and Technology of Inorganic Materials. Inorganic Materials, 58, 673–686. https://doi.org/10.1134/S002016852207007X
  • 48. Suzuki, T., Yabe, T., Enoki, M., & Ohtani, H. (2025). Thermody-namic investigation of Guinier–Preston zone formation in the Al–Cu binary system. Scripta Materialia, 265, Article 116746. https://doi.org/10.1016/j.scriptamat.2025.116746
  • 49. Martínez, E., Senninger, O., Fu, Ch-Ch., & Soisson F. (2012). De-composition kinetics of Fe-Cr solid solutions during thermal aging. Phys. Rev. B 86, 224109. https://doi.org/10.1103/PhysRevB.86.224109
  • 50. Li, Y., Yan, Z., & Zhou, X. (2017). Kinetics of initial phase separa-tion and coarsening of nanoscale phase in Fe-Cr alloys. Journal of Nuclear Materials, 497, 154-160. https://doi.org/10.1016/j.jnucmat.2017.07.063
  • 51. Vojtech, V., Charilaou, M., Kovács, A., Firlus, A., Gerstl, S. S. A., Dunin-Borkowski, R. E., Löffler, J. F., & Schäublin, R. E. (2022). Macroscopic magnetic hardening due to nanoscale spinodal decom-position in Fe-Cr. Acta Materialia, 240, 118265. https://doi.org/10.1016/j.actamat.2022.118265
  • 52. Vojtech, V., Basu, I., Wheeler, J.M., Schäublin, R.E., Löffler, J.F. (2023). Towards high-strength, high-ductility ferritic steels: Pathways to overcome the “475 °C embrittlement” in spinodally decomposed Fe-40Cr alloy, Acta Materialia, 261: 119355. https://doi.org/10.1016/j.actamat.2023.119355
  • 53. Janelidze, I.S., Jandieri, G.V., Janelidze E. (2013). Increase of the Efficiency of Direct Doping of Steel by Modeling of the Process of Carbothermal Reduction of Oxide Systems Cr2O3-MnO-SiO. Bulle-tin of the Georgian national academy of sciences, vol. 7(2), 85-91.
  • 54. Mason, P., Strachan, A., (2021). Thermo-Calc Educational Package. https://doi.org/10.21981/XZR8-9887
  • 55. TCS Steel and Fe-alloys Database (TCFE) Validation and Calculation Examples Collection. (2025), 66 p.
  • 56. Küchler, S., Vojtech, V., Gerstl, S.S.A., Schäublin, R. E., & Löffler, J. F., (2022). Thermally Decomposed Binary Fe-Cr Alloys: Toward a Quantitative Relationship Between Strength and Structure. Advanced Engineering Materials, 24, 2270010. https://doi.org/10.1002/adem.202270010
  • 57. Xiong, W., Selleby, M., Chen, Q., Odqvist, J., & Du, Y. (2010). Phase Equilibria and Thermodynamic Properties in the Fe-Cr System. Critical Reviews in Solid State and Materials Sciences, 35(2), 125–152. https://doi.org/10.1080/10408431003788472
  • 58. L’vov, P., Kochaev, A. & Tikhonchev, M. (2025). Multiscale Model-ing of the Phase Transformation and Grain Boundary Segregation in Fe-Cr Alloy at the Temperature of 600 K. JOM 77, 6828–6841. https://doi.org/10.1007/s11837-025-07496-8
  • 59. Dubiel, S.M., Żukrowski, J. (2019). Kinetics of phase separation, border of miscibility gap in Fe–Cr and limit of Cr solubility in iron at 832 K. Materials Characterization, 158, 109937. https://doi.org/10.1016/j.matchar.2019.109937
  • 60. Filipovic, M., Romhanji, E., Kamberovic, Z. (2012). Chemical Com-position and Morphology of M7C3 Eutectic Carbide in High Chro-mium White Cast Iron Alloyed with Vanadium. ISIJ International, 52(12), 2200-2204. https://doi.org/10.2355/isijinternational.52.2200
  • 61. Jokari-Sheshdeh, M., Ali, Y., Gallo, S.C. et al. (2023). Effect of Cr:Fe ratio on the mechanical properties of (Cr,Fe)7C3 ternary car-bides in abrasion-resistant white cast irons. Journal of Materials Sci-ence, 58, 7504–7521. https://doi.org/10.1007/s10853-023-08461-z
  • 62. Jandieri, G. (2012). Electrothermal alloying of grey cast iron from iron-containing fine-dispersive technogenic waste. Proceedings of the IX International Congress “Machines, Technologies, Materials”, Varna, Bulgaria, 1, 5–8.
  • 63. Sakhvadze, D., Jandieri, G., Saralidze, B., et al. (2024). A novel method of hydro-vacuum dispersion of metallurgical melts: research and implementation. Sediment Transport Research - Further Recent Advances. IntechOpen. http://dx.doi.org/10.5772/intechopen.1004129
  • 64. Jandieri, G.V., Sakhvadze, D.V., Saralidze, B.G. et al. (2024). Physi-cal and Technological Features of Mechanoactivation of Powder Par-ticles Formed during Hydro-Vacuum Dispersion of Metallic Melts. Physics of Metals and Metallography, 125, 478–491 https://doi.org/10.1134/S0031918X23603190
  • 65. Karangwa, E., & Turabimana, P. (2021). Study of Subsurface Dam-age of Tungsten Alloy in Rotary Ultrasonic Grinding. Engineering Perspective, 1(4), 99-109. https://doi.org/10.29228/eng.pers.54728
  • 66. Çevik, S. (2014). Vanadyum (021202) (9-18). Afyon Kocatepe Ün-iversitesi Fen Ve Mühendislik Bilimleri Dergisi, 14(2), 9-18. https://doi.org/10.5578/fmbd.8134
  • 67. Al Nur, M., Khan, S. A. R., Hossaın, M. A., Kaiser, M. (2020). In-fluence of ternary aluminium and quaternary zirconium on the physi-cal properties of bell metal. The International Journal of Materials and Engineering Technology, 3(2), 75-89.
  • 68. Hong, C.- chiang. (2024). Advanced Frequency of Thick FGM Spherical Shells with Fully Homogeneous Equation by Using TSDT and Nonlinear Varied Shear Coefficient. Engineering Perspective, 4(4), 130-140. https://doi.org/10.29228/eng.pers.77784
There are 68 citations in total.

Details

Primary Language English
Subjects Computational Material Sciences, Metals and Alloy Materials
Journal Section Articles
Authors

Gigo Jandieri

Giorgi Gordeziani

Publication Date November 26, 2025
Submission Date July 30, 2025
Acceptance Date November 18, 2025
Published in Issue Year 2025 Volume: 5 Issue: 4

Cite

APA Jandieri, G., & Gordeziani, G. (n.d.). Early Diagnostics of Alloys For Spinodal Decomposition: A Case of Preventive Prediction of Phase Delamination in an Irregular Fe-Cr-C Solid Solution (The Design Stage). Engineering Perspective, 5(4), 183-193. https://doi.org/10.64808/engineeringperspective.1753602