Numerical Hydrothermal Investigation of Multiphase Flow of Aqueous Alumina Nanofluids in Millichannels
Year 2025,
Volume: 5 Issue: 4, 162 - 182
Aliihsan Koca
,
Mansur Mustafaoğlu (nasiri Khalaji)
,
Muhammet Kaan Yeşilyurt
Abstract
The increasing power density of modern electronics necessitates advanced thermal management solutions beyond the capabilities of conventional cooling methods. While multiphase flow boiling in millichannels is a promising approach, there is a scarcity of data on the performance of nanofluids within this regime, particularly concerning the establishment of stable and hydrodynamically efficient annular flows. This study numerically investigates the heat transfer and hydrodynamic characteristics of multiphase flows of aqueous alumina (Al₂O₃) nanofluids (0.25% and 0.5% volumetric concentrations) within a rectangular millichannel to address this gap. A key contribution of this work is the use of an integrated modeling approach, where a one-dimensional (1D) analytical model is first used to define the boundary conditions required to achieve a stable, thin-film annular flow across the entire channel length. These conditions are then implemented in a comprehensive three-dimensional (3D) multiphase computational fluid dynamics (CFD) model. Results demonstrate that increasing nanoparticle concentration enhances heat transfer, with the nanofluids providing an improvement in heat transfer up to 35.6% compared to pure water. This improvement, however, is accompanied by an increase in pressure drop of 10.9% and 18.2% for the 0.25% and 0.5% concentrations, respectively. By providing detailed performance data for nanofluids in a controlled annular flow regime, this study contributes to the design and optimization of next-generation, high-heat-flux cooling systems and directly contributes to the underexplored area of multiphase nanofluid dynamics in millichannels.
Supporting Institution
TUBITAK
Project Number
TUBITAK 3501 Project #118M457
References
-
1. Yan, Z., Jin, M., Li, Z., Zhou, G., & Shui, L. (2019). Droplet-Based Microfluidic Thermal Management Methods for High Performance Electronic Devices, Micromachines, 10(2), 89, https://doi.org/10.3390/mi10020089
-
2. Alihosseini, Y., Rezazad Bari, A., & Mohammadi, M. (2021) Effective Parameters on Increasing Efficiency of Microscale Heat Sinks and Application of Liquid Cooling in Real Life in Advances in Microfluidics and Nanofluids, S. M. S. Murshed, Ed., London: IntechOpen http://dx.doi.org/10.5772/intechopen.96467
-
3. Murshed, S. S., & Castro, C. N. (2017). A critical review of traditional and emerging techniques and fluids for electronics cooling, Renewable and Sustainable Energy Reviews, 78, 821–833. https://doi.org/10.1016/j.rser.2017.04.112
-
4. Al-Asadi, M. T., & Al-Sallami, W. T. (2018). Do ionic liquids replace water or nanofluids to enhance heat transfer in micro-channel systems?, MATEC Web Conf., 240, 3001, https://doi.org/10.1051/matecconf/201824003001
-
5. Perl, T. et al. (2019). Aluminium release by coated and uncoated fluid‐warming devices, Anaesthesia, 74(6), 708–713, https://doi.org/10.1111/anae.14601
-
6. Kercher, D. S., Lee, J.-B., Brand, O., Allen, M. G., & Glezer, A. (2003). Microjet cooling devices for thermal management of electronics, IEEE Trans. Comp. Packag. Technol., 26(2), 359–366, https://doi.org/10.1109/TCAPT.2003.815116
-
7. Krambeck, L., Baptista, N., de Marrone, Dias, D., & Antonini, A. (2019). Thermal performance evaluation of different passive devices for electronics cooling, Therm sci, 23(2 Part B), 1151–1160, https://doi.org/10.2298/TSCI170610300K
-
8. Sun, Y., Samudra, A., & Sahinidis, N. V. (2019). 110th Anniversary : Design of Cooling Fluids for Electronic Equipment, Ind. Eng. Chem. Res., 58(12), 4925–4935, https://doi.org/10.1021/acs.iecr.8b06378
-
9. Demir, E., et al. (2012). Multiphase submerged jet impingement cooling utilizing nanostructured plates. In ASME 2012 10th International Conference on Nanochannels, Microchannels, and Minichannels (pp. 49–56). Rio Grande, Puerto Rico, USA
-
10. Münsterjohann, S., Grabinger, J., Becker, S., & Kaltenbacher, M. (2016). CAA of an Air-Cooling System for Electronic Devices, Advances in Acoustics and Vibration, 2016, 1–17, https://doi.org/10.1155/2016/4785389
-
11. Maxwell, J. C., A treatise on electricity and magnetism, 3rd ed. New York: Dover, 1954.
-
12. Cingarapu, S., Singh, D., Timofeeva, E. V., & Moravek, M. R. (2014). Nanofluids with encapsulated tin nanoparticles for advanced heat transfer and thermal energy storage, Int. J. Energy Res., 38(1), 51–59, https://doi.org/10.1002/er.3041
-
13. Mikkola, V., Puupponen, S., Granbohm, H., Saari, K., Ala-Nissila, T., & Seppälä, A. (2018). Influence of particle properties on convective heat transfer of nanofluids, International journal of thermal sciences, 124, 187–195, https://doi.org/10.1016/j.ijthermalsci.2017.10.015
-
14. Minea, A. A. (2021). State of the Art in PEG-Based Heat Transfer Fluids and Their Suspensions with Nanoparticles, Nanomaterials, 11(1), 86, https://doi.org/10.3390/nano11010086
-
15. Millien, K. (2020). Characterization of Local Nano-Heat Transfer Fluids for Solar Thermal Collection, Advances in Materials Science and Engineering, 2020, 1–8, https://doi.org/10.1155/2020/6105879
-
16. Guo, S.-Z., Li, Y., Jiang, J.-S., & Xie, H.-Q. (2010). Nanofluids Containing γ-Fe2O3 Nanoparticles and Their Heat Transfer Enhancements, Nanoscale Res Lett, 5(7), 1222–1227, https://doi.org/10.1007/s11671-010-9630-1
-
17. Motevali, A., Hasandust Rostami, M., Najafi, G., & Yan, W.-M. (2021). Evaluation and Improvement of PCM Melting in Double Tube Heat Exchangers Using Different Combinations of Nanoparticles and PCM (The Case of Renewable Energy Systems), Sustainability, 13(19), 10675, https://doi.org/10.3390/su131910675
-
18. Fox, E. B., Visser, A. E., Bridges, N. J., & Amoroso, J. W. (2013). Thermophysical Properties of Nanoparticle-Enhanced Ionic Liquids (NEILs) Heat-Transfer Fluids, Energy Fuels, 27(6), 3385–3393, https://doi.org/10.1021/ef4002617
-
19. Aghayari, R., Maddah, H., Ashori, F., Hakiminejad, A., & Aghili, M. (2015). Effect of nanoparticles on heat transfer in mini double-pipe heat exchangers in turbulent flow, Heat Mass Transfer, 51(3), 301–306, https://doi.org/10.1007/s00231-014-1415-0
-
20. Sözen, A., Khanları, A., & Çiftçi, E. (2019). Heat transfer enhancement of plate heat exchanger utilizing kaolin-including working fluid, Proceedings of the Institution of Mechanical Engineers, Part A: Journal of Power and Energy, 233(5), 626–634, https://doi.org/10.1177/0957650919832445
-
21. Krishna, Y., Faizal, M., Saidur, R., Ng, K. C., & Aslfattahi, N. (2020). State-of-the-art heat transfer fluids for parabolic trough collector, International Journal of Heat and Mass Transfer, 152, 119541, https://doi.org/10.1016/j.ijheatmasstransfer.2020.119541
-
22. Mahian, O., Kolsi, L., Amani, M., Estellé, P., Ahmadi, G., Kleinstreuer, C., Marshall, J.S., Siavashi, M., Taylor, R.A., Niazmand, H., & Wongwises, S. (2013). Small particles, big impacts: a review of the diverse applications of nanofluids, Journal of applied physics, 113, 011301. https://doi.org/10.1063/1.4754271
-
23. Wang, X. Q., & Mujumdar, A. S. (2007). Heat transfer characteristics of nanofluids: a review, International journal of thermal sciences, 46(1), 1–19. https://doi.org/10.1016/j.ijthermalsci.2006.06.010
-
24. Manninen, M., Taivassalo, V., & Kalliio, S. (1996). On the mixtrue model for multiphase flow. Espoo: Valtiion Teknillinen Tutkmuskeskus.
-
25. Akeedy, A. R., Alias, H., & D. Salman, S. (2021). Heat Transfer Enhancement Using Passive Technique: Review, Jurnal Teknologi, 83(2), 151–162, https://doi.org/10.11113/jurnalteknologi.v83.14546
-
26. Chehade, A. A., Gualous, H. L., Le Masson, S., Fardoun, F., & Besq, A. (2013). Boiling local heat transfer enhancement in minichannels using nanofluids, Nanoscale Research Letters, 8(1), 130. https://doi.org/10.1186/1556-276X-8-130
-
27. Li, G., & Fang, X. (2021). Numerical Simulation on the Boiling Flow Patterns of Al2O3-Water Nanofluid in Micro/Minichannel under Different Hypergravity Levels and Directions, International Journal of Aerospace Engineering, 2021, 1–12, https://doi.org/10.1155/2021/4802182
-
28. Faulkner, D., Khotan, M., & Shekarriz, R., Practical design of a 1000 W/cm/sup 2/cooling system [High Power Electronics in Ninteenth Annual IEEE Semiconductor Thermal Measurement and Management Symposium, 2003, (Mar. 2003), 223–230. https://doi.org/10.1109/STHERM.2003.1194366
-
29. Peng, H., Ding, G., Jiang, W., Hu, H., & Gao, Y. (2009). Heat transfer characteristics of refrigerant-based nanofluid flow boiling inside a horizontal smooth tube, International Journal of Refrigeration, 32(6), 1259–1270. https://doi.org/10.1016/j.ijrefrig.2009.01.025
-
30. Kim, S. J., McKrell, T., Buongiorno, J., & Hu, L. W. (2010). Subcooled flow boiling heat transfer of dilute alumina, zinc oxide, and diamond nanofluids at atmospheric pressure, Nuclear Engineering and Design, 240(5), 1186–1194. https://doi.org/10.1016/j.nucengdes.2010.01.020
-
31. Boudouh, M., Gualous, H. L., & Labachelerie, M. (2010). Local convective boiling heat transfer and pressure drop of nanofluid in narrow rectangular channels, Applied Thermal Engineering, 30(17-18), 2619–2631. http://dx.doi.org/10.1016/j.applthermaleng.2010.06.027
-
32. Henderson, K., Park, Y. G., Liu, L., & Jacobi, A. M. (2010). Flow-boiling heat transfer of R-134a-based nanofluids in a horizontal tube, International Journal of Heat and Mass Transfer, 53(5-6), 944–951. https://doi.org/10.1016/j.ijheatmasstransfer.2009.11.026
-
33. Xu, L., & Xu, J. (2012). Nanofluid stabilizes and enhances convective boiling heat transfer in a single microchannel, International Journal of Heat and Mass Transfer, 55(21-22), 5673–5686. http://dx.doi.org/10.1016/j.ijheatmasstransfer.2012.05.063
-
34. Jain, N., Gaur, M., Agrawal, P., & Dadheech, P. K. (2024). A Study of Modified Nanofluid Flow Over an Exponentially Stretching Surface With Inclined Magnetic Field And Porous Media. Engineering Perspective, 3(3), 125–129. https://doi.org/10.29228/eng.pers.76434.
-
35. Rana, K. B., Rajvanshi, A. K., & Agrawal, G. D. (2013). A visualization study of flow boiling heat transfer with nanofluids, Journal of visualization, 16(2), 133–143. https://doi.org/10.1007/s12650-013-0161-6
-
36. Sun, B., & Di Yang. (2014). Flow boiling heat transfer characteristics of nano-refrigerants in a horizontal tube, International Journal of Refrigeration, 38, 206–214. https://doi.org/10.1016/j.ijrefrig.2013.08.020
-
37. Sarafraz, M. M., & Hormozi, F. (2014). Scale formation and subcooled flow boiling heat transfer of CuO–water nanofluid inside the vertical annulus, Experimental thermal and fluid science, 52, 205–214. https://doi.org/10.1016/j.expthermflusci.2013.09.012
-
38. Lee, J., & Mudawar, I. (2007). Assessment of the effectiveness of nanofluids for single-phase and two-phase heat transfer in micro-channels, International Journal of Heat and Mass Transfer, 50(3-4), 452–463. https://10.1016/j.ijheatmasstransfer.2006.08.001
-
39. Vafaei, S., & Wen, D., (2011a), Flow boiling heat transfer of alumina nanofluids in single microchannels and the roles of nanoparticles, Journal of Nanoparticle Research, 13(3), 1063–1073. https://doi.org/10.1007/s11051-010-0095-z
-
40. Ahn, H. S., Kim, H., Jo, H., Kang, S., Chang, W., & Kim, M. H. (2010). Experimental study of critical heat flux enhancement during forced convective flow boiling of nanofluid on a short-heated surface, International Journal of Multiphase Flow, 36(5), 375–384. https://doi.org/10.1016/j.ijmultiphaseflow.2010.01.004
-
41. Wu, X., Wu, H., & Cheng, P. (2009). Pressure drop and heat transfer of Al2O3-H2O nanofluids through silicon microchannels, Journal of micromechanics and microengineering, 19(10), 105020. https://doi.org/10.1088/0960-1317/19/10/105020
-
42. Duursma, G., Sefiane, K., Dehaene, A., Harmand, S., & Wang, Y. (2015). Flow and heat transfer of single-and two-phase boiling of nanofluids in microchannels (in nl), Heat Transfer Engineering, 36(14-15), 1252–1265. https://doi.org/10.1080/01457632.2014.994990
-
43. Vafaei, S., & Wen, D., (2014b), Critical heat flux of nanofluids inside a single microchannel: experiments and correlations, Chemical Engineering Research and Design, 92(11), 2339–2351. https://doi.org/10.1016/j.cherd.2014.02.014
-
44. Edel, Z., & Mukherjee, A. (2015). Flow boiling dynamics of water and nanofluids in a single microchannel at different heat fluxes, Journal of Heat Transfer, 137(1). http://doi.org/10.1115/1.4028763
-
45. Morshed, A., Paul, T. C., & Khan, J. A. (2013). Effect of Al2O3 nanoparticle deposition on flow boiling performance of water in a microchannel, Experimental thermal and fluid science, 47, 6–13. https://doi.org/10.1016/j.expthermflusci.2012.11.015
-
46. Rolfe, R. M., Brown, H. R., & Nash, S. H. (1997). Defense Electronics Product Reliability Requirements, Institute for Defense Analyses,
-
47. Pedram, M., & Nazarian, S. (2006). Thermal modeling, analysis, and management in VLSI circuits: Principles and methods, Proceedings of the IEEE, 94(8), 1487–1501. https://doi.org/10.1109/JPROC.2006.879797
-
48. Reynell, M. (1990). Advanced thermal analysis of packaged electronic systems using computational fluid dynamics techniques. Computer-Aided Engineering Journal. 7(4). https://doi.org/10.1049/cae.1990.0025
-
49. R. C. Pfahl, & J. McElroy, The 2004 International Electronics Manufacturing Initiative (iNEMI) Technology Roadmaps in 2005 Conference on High Density Microsystem Design and Packaging and Component Failure Analysis. (2005). 1–7. https://doi.org/10.1109/HDP.2005.251376
-
50. Balaji, T., Selvam, C., & Mohan Lal, D. (2021). A Review on Electronics Cooling using Nanofluids, IOP Conf. Ser.: Mater. Sci. Eng., 1130, 1, 12007, https://doi.org/10.1088/1757-899X/1130/1/012007
-
51. Cheung, M., The State of Microprocessor Cooling Systems - The Startup - Medium, The Startup, 2020. Accessed: Sep. 22 2023).
-
52. Agostini, B., Fabbri, M., Park, J. E., Wojtan, L., Thome, J. R., & Michel, B. (2007). State of the Art of High Heat Flux Cooling Technologies, Heat Transfer Engineering, 28, 4, 258–281, https://doi.org/10.1080/01457630601117799
-
53. Reay, D. A., Kew, P. A., & McGlen, R. J. (2014). Heat Pipes (Sixth Edition, Theory, Design and Applications, 207–225.
-
54. Wei, X. (2004). Stacked microchannel heat sinks for liquid cooling of microelectronics devices, PhD Thesis. Georgia Institute of Technology.
-
55. Garimella, S. V., Singhal, V., & Liu, D. (2006). On-Chip Thermal Management with Microchannel Heat Sinks and Integrated Micropumps, Proceedings of the IEEE, 94, 8, 1534–1548, https://doi.org/10.1109/JPROC.2006.879801
-
56. Agostini, B., Thome, J. R., Fabbri, M., Michel, B., Calmi, D., & Kloter, U. (2008). High heat flux flow boiling in silicon multi-microchannels–Part I: Heat transfer characteristics of refrigerant R236fa, International Journal of Heat and Mass Transfer, 51, 21-22, 5400–5414. https://doi.org/10.1016/j.ijheatmasstransfer.2008.03.006
-
57. Chang, Y.-W., Cheng, C.-H., Wang, J.-C., & Chen, S.-L. (2008). Heat pipe for cooling of electronic equipment. Energy Conversion and Management, 49(11), 3398–3404. https://doi.org/10.1016/j.enconman.2008.05.002 .
-
58. Ebadian, M. A., & Lin, C. X. (2011). A review of high-heat-flux heat removal technologies, Journal of Heat Transfer, 133, 11, 110801. https://doi.org/10.1115/1.4004340
-
59. Mudawar, I. (2001). Assessment of high-heat-flux thermal management schemes, IEEE Trans. Compon. Packag. Technol, 24, 2, 122–141. https://doi.org/10.1109/6144.926375
-
60. Koca, A., & Khalaji, M. N. (2019). Numerical Simulation of Annular Flow boiling in Millimeter-scale Channels and Investigation of Design Parameters Using Taguchi Method, Bilge International Journal of Science and Technology Research, 3, 0, 45–57, https://doi.org/10.30516/bilgesci.648096.
-
61. Park, C., & Jaura, A. K. (2002). Thermal Analysis of Cooling System in Hybrid Electric Vehicles, SAE Transactions, 1–710. https://doi.org/10.4271/2002-01-0710
-
62. R. Ponnappan, B. Donovan, and L. Chow, High power thermal management issues in spacebased systems, Space Technology and Applications International Forum-STAIF 2002. Albuquerque, New Mexico. https://doi.org/10.1063/1.1449709
-
63. Park, C., & Vallury, A., Advanced hybrid cooling loop technology for high performance thermal management in 4th International Energy Conversion Engineering Conference, (2006).
-
64. Park, C., Zuo, J., Rogers, P., & Perez, J. (2004). Hybrid Loop Thermal Bus Technology for Vehicle Thermal Management In 4th Army Science Conference, November 29 - December 2, 2004 Orlando, Florida.
-
65. Urciuoli, D., Tipton, C. W., & Porschet, D., Development of a 90 kW, Two-Phase, Bi-Directional DC-DC Converter for Power Dense Applications, U.S. ADA433112, Adelphi, MD: Army Research Laboratory, 2015. https://doi.org/10.1109/APEC.2006.1620718
-
66. Bar-Cohen, A., Maurer, J.J., Felbinger, J.G. (2013). Darpa's intra/interchip enhanced cooling (icecool) program in Proc. of 28th International Conference on Compound Semiconductor Manufacturing Technology, 13 - 16 May 2013 New Orleans, LA, pp. 171-174
-
67. Swanson, T. D., & Birur, G. C. (2003). NASA thermal control technologies for robotic spacecraft, Appl. Therm. Eng, 23, 1055–1065. https://doi.org/10.1016/S1359-4311(03)00036-X
-
68. Murshed, S. M.S. (2016) Introductory Chapter: Electronics Cooling – An Overview in Electornics Cooling S. M. S. Murshed, Ed., London: IntechOpen. https://doi.org/10.5772/63321
-
69. Saums, D., Levett, D., & Howes, J., Cooling of IGBT Modules with Vaporizable Dielectric Fluid (VDF in International Microelectronics and Packagining Society France, 4th Annual Advanced Technology Workshop on Thermal Management, La Rochelle, France, 2008. https://doi.org/10.1109/STHERM.2008.4509358
-
70. Saums, D., Vaporizable Dielectric Fluid Cooling of IGBT Power Semiconductors for Vehicle Powertrains in 5th IEEE Vehicle Power and Propulsion Conference, (2009).
-
71. Cheng, L., Ribatski, G., & Thome, J. (2008). Two-Phase Flow Patterns and Flow-Pattern Maps: Fundamentals and Applications, ASME Applied Mechanics Reviews, 61, 5, 1–28. https://doi.org/10.1115/1.2955990
-
72. Lasance, C. J., & Simons, R. E. (2005). Advances in high-performance cooling for electronics. Electronics Cooling, 11, 4, 22-39.
-
73. Orville, T., Tajwar, M., Bihani, R., Saha, P., & Hannan, M. A. (2025). Enhancing Thermal Efficiency in Power Electronics: A Review of Advanced Materials and Cooling Methods. Thermo, 5, 3, 30. https://doi.org/10.3390/thermo5030030
-
74. Faghri, A., Heat Pipe Science and Technology. Washington D. C: Taylor, & Francis, 1995.
-
75. Ball, P. (2012). Computer engineering: Feeling the heat, Nature, 492, 7428, 174–176. https://doi.org/10.1038/492174a
-
76. Carey, V. P., Computer engineering: Feeling the heat, Liquid-Vapor Phase-Change Phenomena, Series in Chemical and Mechanical Engineering: Taylor and Francis Group, 2008. https://doi.org/10.1201/9780429082221
-
77. Mandrusiak, G. D., Carey, V. P., & Xu, X. (1988). An Experimental Study of Convective Boiling in a Partially Heated Horizontal Channel With Offset Strip Fins, Journal of Heat Transfer, 110, 1, 229–236. https://doi.org/10.1115/1.3250456
-
78. Ma, A., Wei J., Yuan M., Fang, J. (2009). Enhanced flow boiling heat transfer of FC-72 on micro-pin-finned surfaces, International Journal of Heat and Mass Transfer, 52, 13-14, 2925–2931. https://doi.org/10.1016/J.IJHEATMASSTRANSFER.2009.02.031
-
79. Nakayama, W., Daikoku, T., Kuwahara, H., & Nakajima, T. (1980). Dynamic Model of Enhanced Boiling Heat Transfer on Porous Surfaces‐-Part I: Experimental Investigation, Journal of Heat Transfer, 102, 3, 445–450. http://dx.doi.org/10.1115/1.3244320
-
80. Rainey, K. N., Li, G., & You, S. M. (2001). Flow Boiling Heat Transfer From Plain and Microporous Coated Surfaces in Subcooled FC72, Journal of Heat Transfer, 123, 5, 918–925. https://doi.org/10.1115/1.1389465
-
81. Holland, B., Ozman, N., & Wirtz, R. A. (2008). Flow boiling of FC-72 from a screen laminate extended surface matrix, Microelectronics Journal, 39, 7, 1001–1007. https://doi.org/10.1615/IHTC17.150-60
-
82. Hailei, W., & Peterson, R. B. (2010). Enhanced Boiling Heat Transfer in Parallel Microchannels With Diffusion Brazed Wire Mesh, Components and Packaging Technologies, IEEE Transactions, 33, 4, 784–793. https://doi.org/10.1109/TCAPT.2010.2070799
-
83. Zhang, L., & vd, Enhanced Nucleate Boiling in Microchannels in Proc. Micro Electro Mechanical Systems, the Fifteenth IEEE International Conference. (2002). 89–92.
-
84. Liu, D., & Garimella, S. V. (2007). Flow Boiling Heat Transfer in Microchannels, Journal of Heat Transfer, 129, 10, 1321–1332. https://doi.org/10.1115/1.2754944
-
85. Peles, Y., Kosar, A., & Kuo, C. J. (2005). Reduced Pressure Boiling Heat Transfer in Rectangular Microchannels With Interconnected Reentrant Cavities, Journal of Heat Transfer, 127, 10, 1106–1114. https://doi.org/10.1115/1.2035107
-
86. Peles, Y. (2006). Bubble Dynamics During Boiling in Enhanced Surface Microchannels, Microelectromechanical Systems, Journal of Enhanced Surface Microchannels, 15, 6, 1514–1527. https://doi.org/10.1109/JMEMS.2006.885975
-
87. Peles, Y., Two-Phase Boiling Flow in Microchannels-Instabilities Issues and Flow Regime Mapping in 1st International Conference on Microchannels and Minichannels. (2009). 559–566. https://doi.org/10.1115/icmm2003-1069
-
88. Narain, A., Prasad, H. P. R., & Koca, A., Internal Annular Flow Condensation and Flow Boiling: Context, Results, and Recommendations in Handbook of Thermal Science and Engineering, F. A. Kulacki, Ed., Cham: Springer International Publishing, 2017, 1–88. https://doi.org/10.1007/978-3-319-32003-8_51-1
-
89. Prasad, H., Narain, A., Bhasme, S. S., & Naik, R. R. (2017). Shear-driven annular flow-boiling in millimeter-scale channels: Direct numerical simulations for convective component of the overall heat transfer coefficient, International Journal of Transport Phenomena, 15, 1.
-
90. Kong, D. et al. (2021). A holistic approach to thermal-hydraulic design of 3D manifold microchannel heat sinks for energy-efficient cooling, Case Studies in Thermal Engineering, 28, 101583, https://doi.org/10.1016/j.csite.2021.101583
-
91. Awais, A. A., & Kim, M.-H. (2020). Experimental and numerical study on the performance of a minichannel heat sink with different header geometries using nanofluids, Applied Thermal Engineering, 171, 115125, https://doi.org/10.1016/j.applthermaleng.2020.115125
-
92. Tamai, H., Kureta, M., Yoshida, H., & Akimoto, H. (2004). Pressure Drop Characteristics in Tight-Lattice Bundles for Reduced-Moderation Water Reactors, JSME Int. J., Ser. B, 47, 2, 293–298, https://doi.org/10.1299/jsmeb.47.293
-
93. Reinke, P., Surface boiling of superheated liquid, ETH Zurich, 1996.
-
94. Reinke, P., & Yadigaroglu, G. (2001). Explosive vaporization of superheated liquids by boiling fronts, International Journal of Multiphase Flow, 27, 9, 1487–1516, https://doi.org/10.1016/S0301-9322(01)00023-4
-
95. Youn, Y. J., Muramatsu, K., Han, Y., & Shikazono, N. (2015). The effect of initial flow velocity on the liquid film thickness in micro tube accelerated slug flow, International Journal of Multiphase Flow, 73, 108–117, https://doi.org/10.1016/j.ijmultiphaseflow.2015.03.006
-
96. Patel, R. S., Weibel, J. A., & Garimella, S. V. (2017). Characterization of liquid film thickness in slug-regime microchannel flows, International Journal of Heat and Mass Transfer, 115, 1137–1143, https://doi.org/10.1016/j.ijheatmasstransfer.2017.08.008.
-
97. Koca, A., Mustafaoglu, M., Karakoyun, Y., & Dalkilic, A. S. (2025). The effect of the important variables for the design novel milli-channel cooling system on the evaporator performance by the Taguchi method. Journal of Thermal Analysis and Calorimetry, 150(5), 3637–3659. https://doi.org/10.1007/s10973-024-13894-y .
-
98. Sepahyar, S., Influence of Micro-Nucleate Boiling On Annular Flow Regime Heat Transfer Coefficient Values and Flow Parameters–For High Heat-Flux Flow Boiling of Water. PhD Thesis, Michigan Technological University, Houghton, Michigan, 2019. https://doi.org/10.37099/mtu.dc.etdr/832
-
99. Doormaal, J. P., & Raithby, G. D. (1984). Enhancements of the SIMPLE method for predicting incompressible fluid flows, Numerical heat transfer, 7(2), 147–163. https://doi.org/10.1080/01495728408961817
100. Hasan, M. Z. (1989). Effects of nonuniform surface heat flux and uniform volumetric heating on blanket design for fusion reactors, Fusion Technology, 16(1), 44–52. https://doi.org/10.13182/FST89-A29095
-
101. Bianco, V., Chiacchio, F., Manca, O., & Nardini, S. (2009). Numerical investigation of nanofluids forced convection in circular tubes, Applied Thermal Engineering, 29(17-18), 3632–3642. http://dx.doi.org/10.1016/j.applthermaleng.2009.06.019
-
102. Ullah, A., Kilic, M., Habib, G., Sahin, M., Khalid, R. Z., & Sanaullah, K. (2023). Reliable prediction of thermophysical properties of nanofluids for enhanced heat transfer in process industry: a perspective on bridging the gap between experiments, CFD and machine learning. Journal of Thermal Analysis and Calorimetry, 148(12), 5859–5881. https://doi.org/10.1007/s10973-023-12083-7 .
-
103. Das, S. K., Choi, S. U., Yu, W., & Pradeep, T. (2007). Nanofluids: science and technology: John Wiley, & Sons.
-
104. Aybar, H. Ş., Sharifpur, M., Azizian, M. R., Mehrabi, M., & Meyer, J. P. (2015). A Review of Thermal Conductivity Models for Nanofluids. Heat Transfer Engineering, 36(13), 1085–1110. https://doi.org/10.1080/01457632.2015.987586
-
105. Drew, D. A., & Passman, S. L., Theory of multicomponent fluids: Springer Science, & Business Media, 2006.
-
106. Aliihsan, K., Khalaji, M. N., & Sepahyar, S. (2021). Boiling heat transfer simulation in rectangular millichannels, Journal of Thermal Engineering, 7(6), 1432–1447. https://dx.doi.org/10.18186/thermal.990803
-
107. Harirchian, T., & Garimella, S. V. (2009). The critical role of channel cross-sectional area in microchannel flow boiling heat transfer, International Journal of Multiphase Flow, 35, 10, 904–913. http://dx.doi.org/10.1016/j.ijmultiphaseflow.2009.06.005
-
108. Kim, S. M., & Mudawar, I., (2014a), Review of databases and predictive methods for heat transfer in condensing and boiling mini/micro-channel flows, International Journal of Heat and Mass Transfer, 77, 627–652. http://dx.doi.org/10.1016/j.ijheatmasstransfer.2014.05.036
-
109. Mandhane, J. M., Gregory, G. A., & Aziz, K. (1974). A flow pattern map for gas—liquid flow in horizontal pipes, International Journal of Multiphase Flow, 1, 4, 537–553. https://doi.org/10.1016/0301-9322(74)90006-8
-
110. Zivi S. M. (1964). Estimation of steady-state steam void-fraction by means of the principle of minimum entropy production. Journal of Heat Transfer-Transactions of The Asme, 86(2), 247–251. https://doi.org/10.1115/1.3687113
-
111. Rouhani, S. Z., & Axelsson, E., Calculation of void volume fraction in the subcooled and quality boiling regions. Stockholm: Aktiebolaget Atomenergi, 1968.
-
112. Kim, S. M., & Mudawar, I., (2013b), Universal approach to predicting two-phase frictional pressure drop for mini/micro-channel saturated flow boiling, International Journal of Heat and Mass Transfer, 58, 1-2, 718–734. http://dx.doi.org/10.1016/j.ijheatmasstransfer.2012.02.047
-
113. Cheng, L., Xia, G., & Thome, J. R. (2021). Flow boiling heat transfer and two-phase flow phenomena of CO2 in macro- and micro-channel evaporators: Fundamentals, applications and engineering design. Applied Thermal Engineering, 195, 117070. https://doi.org/10.1016/j.applthermaleng.2021.117070
-
114. Ruzaikin, V., Lukashov, I., Breus, A., & Shypul, O. (2024). Ammonia adiabatic two-phase flow patterns in the horizontal tube. International Journal of Heat and Mass Transfer, 234, 126133. https://doi.org/10.1016/j.ijheatmasstransfer.2024.126133 .
-
115. Trieu Phan, H., Caney, N., Marty, P., Colasson, S., & Gavillet, J. (2011). Flow boiling of water in a minichannel: The effects of surface wettability on two-phase pressure drop. Applied Thermal Engineering, 31(11-12), 1894–1905. https://doi.org/10.1016/j.applthermaleng.2011.02.036
-
116. Kim, S. M., & Mudawar, I. (2013). Universal approach to predicting saturated flow boiling heat transfer in mini/micro-channels–Part II. Two-phase heat transfer coefficient, International Journal of Heat and Mass Transfer, 64, 1239–1256. http://dx.doi.org/10.1016/j.ijheatmasstransfer.2013.04.014
-
117. Kim, S. M., & Mudawar, I., (2013c), Universal approach to predicting saturated flow boiling heat transfer in mini/micro-channels–Part I. Dryout incipience quality, International Journal of Heat and Mass Transfer, 64, 1226–1238. https://doi.org/10.1016/j.ijheatmasstransfer.2013.04.016