Review Article
BibTex RIS Cite

A Comprehensive Review on Fuel Cells: From Fundamental Principles to PEM Fuel Cell Membranes

Year 2025, Volume: 5 Issue: 4, 194 - 222
https://doi.org/10.64808/engineeringperspective.1791743

Abstract

Fuel cells have a wide range of potential applications in various fields such as stationary power generation, transportation, and portable electronic devices, thanks to their high energy conversion efficiencies, environmentally friendly structures, and simple design features. This study takes a comprehensive approach to fuel cell technologies, starting with the fundamental operating principles and historical development process of fuel cells. Different systems, such as alkaline fuel cells (AFC), phosphoric acid fuel cells (PAFC), solid oxide fuel cells (SOFC), molten carbonate fuel cells (MCFC), proton exchange membrane fuel cells (PEMFC), and direct methanol fuel cells (DMFC), are examined and compared in detail in terms of their operating principles, advantages, limitations, and application areas. Furthermore, the theoretical performance limits of fuel cells and the losses observed in the systems are analyzed, and improvement strategies to reduce these losses are dis-cussed. Special emphasis is placed on PEMFC technology due to its high potential in automotive and portable energy sys-tems. In this context, the structural components of PEMFCs, types of proton exchange membranes, and the main character-istics expected from these membranes are comprehensively addressed. To better understand proton transfer processes, pro-ton transfer mechanisms such as Grotthuss, vehicle, and surface mechanisms are also explained in detail. In conclusion, this review aims to establish a conceptual bridge between the fundamental principles of fuel cell technologies and the current challenges and advances in PEMFC membrane development research.

Ethical Statement

This article is based on previously published literature and does not include any studies involving human participants or animals conducted by the authors. Therefore, ethical approval and informed consent were not required.

Supporting Institution

Afyon Kocatepe University Projects of Scientific Investigation Unit (BAP)

Project Number

24.FEN.BIL.12

Thanks

This study was supported by Afyon Kocatepe University Projects of Scientific Investigation Unit (BAP) with project number 24.FEN.BIL.12. The authors thank to Afyon Kocatepe (BAP) for this work.

References

  • 1. Kocakulak, T., Solmaz, H., Taşkın, G., Tabanlıgil Calam, T., Şahin, F., Calam, A., & et al. (2025). Enhanced synthesis and optimization of sulfonated polysulfone nanocomposite membranes with hexagonal boron nitride and functionalized carbon nanotubes. Inorganic Chemistry Communications, 179, 114867. https://doi.org/10.1016/j.inoche.2025.114867
  • 2. International Energy Agency. (2024). World Energy Outlook 2024. Paris, France: IEA.
  • 3. Savaş, A., & Uslu, S. (2025). Optimization of diethyl ether-modified sesame biodiesel-diesel fuel blends for enhanced engine performance and emission mitigation. International Journal of Automotive Science and Technology, 9(3), 294-304. https://doi.org/10.30939/ijastech..1724235
  • 4. Friedlingstein, P., O’Sullivan, M., Jones, M. W., Andrew, R. M., Hauck, J., Landschützer, P., & et al. (2025). Global carbon budget 2024. Earth System Science Data, 17, 965-1039. https://doi.org/10.5194/essd-17-965-2025
  • 5. Arslan, T. A., & Kocakulak, T. (2023). A comprehensive review on Stirling engines. Engineering Perspective, 3(3), 42-56. http://dx.doi.org/10.29228/eng.pers.66847
  • 6. Ali, R., Yücesu, H. S., Calam, A., & Solmaz, H. (2025). Detailed experimental analysis of combustion characteristics of port fuel injected HCCI engine with n-butanol DEE blends for emission reduction. Energy, 333, 137474. https://doi.org/10.1016/j.energy.2025.137474
  • 7. Calam, A., Ali, R., & Solmaz, H. (2025). Impact of acetone-butanol-ethanol ternary fuel on combustion and emissions in a low-temperature combustion engine with variable compression ratio. Energy Conversion and Management, 343, 120194. https://doi.org/10.1016/j.enconman.2025.120194
  • 8. Güler, Ö. F. (2025). Working fluid selection and performance analysis for the Afyon geothermal energy plant. Engineering Perspective, 5(1), 1-8. http://dx.doi.org/10.29228/eng.pers.80205
  • 9. Haidar, F., Mrad, I., & Dam, Q. T., (2024). Modeling and simulation of integrated photovoltaic-alkaline electrolyzer system for sustainable hydrogen production. Engineering Perspective, 4(2), 60-68. http://dx.doi.org/10.29228/eng.pers.76380
  • 10. Sebbani, I., Ettouhami, M. K., & Boulakhbar, M. (2025). Fuel cells: A technical, environmental, and economic outlook. Cleaner Energy Systems, 10, 100168. https://doi.org/10.1016/j.cles.2024.100168
  • 11. Haynes, C. (2001). Clarifying reversible efficiency misconceptions of high temperature fuel cells in relation to reversible heat engines. Journal of Power Sources, 92(1-2), 199-203. https://doi.org/10.1016/S0378-7753(00)00541-3
  • 12. Navinkumar T. M., & Bharatiraja, C. (2025). Sustainable hydrogen energy fuel cell electric vehicles: A critical review of system components and innovative development recommendations. Renewable and Sustainable Energy Reviews, 215, 115601. https://doi.org/10.1016/j.rser.2025.115601
  • 13. Solmaz, H., Arslan, T. A., & Kocakulak, T. (2024). Modeling of an electrically driven PEM fuel cell bus. In Proceedings on 5th Borobudur International Symposium on Science and Technology (BIS-STE) 2023, V124009. https://doi.org/10.31603/biseeng.31
  • 14. Manzo, D., Thai, R., Le, H. T., & Venayagamoorthy, G. K. (2025). Fuel cell technology review: Types, economy, applications, and vehicle-to-grid scheme. Sustainable Energy Technologies and Assessments, 75, 104229. https://doi.org/10.1016/j.seta.2025.104229
  • 15. Yavuz, B. N., & Kahraman, H. (2023). Performance analysis of geometric properties of fuel cell components. International Journal of Automotive Science and Technology, 7(1), 11-17. https://doi.org/10.30939/ijastech..1221999
  • 16. Khoiruddin, K., Nandar, C. S. A., Kawi, S., Lim, T. M., & Wenten, I. G. (2025). Advanced proton exchange membranes for high-efficiency fuel cells: material innovations and durability optimization. Energy Materials, 5, 500141. https://doi.org/10.20517/energymater.2025.62
  • 17. Kocakulak, T., Taşkın, G., Tabanlıgil Calam, T., Solmaz, H., Calam, A., Arslan, T. A. & et al. (2024). A new nanocomposite membrane based on sulfonated polysulfone boron nitride for proton exchange membrane fuel cells: Its fabrication and characterization. Fuel, 374, 132476. https://doi.org/10.1016/j.fuel.2024.132476
  • 18. Abokhalil, A. G., Alobaid, M., & Makky, A. A. (2023). Innovative approaches to enhance the performance and durability of proton exchange membrane fuel cells. Energies, 16(14), 5572. https://doi.org/10.3390/en16145572
  • 19. Bhuiyan, M. M. H., & Siddique, Z. (2025). Hydrogen as an alternative fuel: A comprehensive review of challenges and opportunities in production, storage, and transportation. International Journal of Hydrogen Energy, 102, 1026-1044. https://doi.org/10.1016/j.ijhydene.2025.01.033
  • 20. Kocakulak, T., & Arslan, T. A. (2023). Investigation of the use of fuel cell hybrid systems for different purposes. Engineering Perspective, 3(1), 1-8. http://dx.doi.org/10.29228/eng.pers.68466
  • 21. Tanış, İ., Arslan, T. A., Kocakulak, T., Taşkın, G., Tabanlıgil Calam, T., & Solmaz, H. (2024). Fabrication and characterisation of sulfonated polysulfone membrane with different thicknesses for proton exchange membrane fuel cell. Engineering Perspective, 4(3), 100-107. http://dx.doi.org/10.2922 8/eng.pers.77899
  • 22. Helsel, N., & Choudhury, P. (2025). Non-platinum group metal oxygen reduction catalysts for a hydrogen fuel cell cathode: A mini-review. Catalysts, 15(6), 588. https://doi.org/10.3390/catal15060588
  • 23. Kurtz, J., Ma, Z., Saur, G., Wrubel, J. A., Mount, R., & Hammond, S. (2023). Analysis of hydrogen infrastructure for the feasibility, economics, and sustainability of a fuel cell powered data center. Sustainable Energy Technologies and Assessments, 58, 103357. https://doi.org/10.1016/j.seta.2023.103357
  • 24. Alibash, T. A. A., & Kuşdoğan Ş. (2024). Overview of fuel cell-hybrid power sources vehicle technology: A review. International Journal of Automotive Science and Technology, 8(3), 260-272. https://doi.org/10.30939/ijastech..1432215
  • 25. Walkowiak-Kulikowska, J., Wolska, J., & Koroniak, H. (2017). Polymers application in proton exchange membranes for fuel cells (PEMFCs). Physical Sciences Reviews, 2(8), 20170018. https://doi.org/10.1515/psr-2017-0018
  • 26. Lucia, U. (2014). Overview on fuel cells. Renewable and Sustainable Energy Reviews, 30, 164-169. https://doi.org/10.1016/j.rser.2013.09.025
  • 27. Katz, E. (2022). Electrochemical contributions: Christian Friedrich Schönbein (1799-1868). Electrochemical Science Advances, 2(1), e2160007. https://doi.org/10.1002/elsa.202160007
  • 28. Grove, W. R. (1838). LVI. On a new voltaic combination. The London, Edinburgh, and Dublin Philosophical Magazine and Journal of Science, 13(84), 430-431. https://doi.org/10.1080/14786443808649618
  • 29. Katz, E. (2024). Electrochemical contributions: Ludwig Mond (1839-1909). Electrochemical Science Advances, 4(2), e2400002. https://doi.org/10.1002/elsa.202400002
  • 30. Gençoğlu, M. T., & Ural, Z. (2009). Design of a PEM fuel cell system for residential application. International Journal of Hydrogen Energy, 34(12), 5242-5248. https://doi.org/10.1016/j.ijhydene.2008.09.038
  • 31. Harold, D., & Wallace, J. (2019). Fuel cells: A challenging history. Substantia, 3(2), 83-97. https://doi.org/10.13128/Substantia-277
  • 32. Burke, K. A. (2003). Fuel cells for space science applications. First International Energy Conversion Engineering Conference, 17–21 August, Portsmouth, VA, USA, 1–10.
  • 33. Rajashekara, K. (1994). History of electric vehicles in general motors. IEEE Transactions on Industy Applications, 30(4), 897- 904. https://doi.org/10.1109/28.297905
  • 34. Curtin, D. E., Lousenberg, R. D., Henry, T. J., Tangeman, P. C., & Tisack, M. E. (2004). Advanced materials for improved PEMFC performance and life. Journal of Power Sources, 131(1-2), 41-48. https://doi.org/10.1016/j.jpowsour.2004.01.023
  • 35. Hepbaşlı, A., & Kalıncı, Y. (2009). A review of heat pump water heating systems. Renewable and Sustainable Energy Reviews, 13(6-7), 1211-1229. https://doi.org/10.1016/j.rser.2008.08.002
  • 36. Tarasenko, A. B., Kiseleva, S. V., & Popel, O. S. (2022). Hydrogen energy pilot introduction - technology competition. International Journal of Hydrogen Energy, 47(23), 11991-11997. https://doi.org/10.1016/j.ijhydene.2022.01.242
  • 37. Chatterjee, D., & Mitra, A. (2006). Ruthenium polyaminocarboxylate complexes. Platinum Metals Review, 50(1), 2-12. https://doi.org/10.1595/147106705X82874
  • 38. Stolzenburg, K., Tsatsami, V., & Grubel, H. (2009). Lessons learned from infrastructure operation in the CUTE project. International Journal of Hydrogen Energy, 34(16), 7114-7124. https://doi.org/10.1016/j.ijhydene.2008.06.035
  • 39. Andújar, J. M., & Segura, F. (2009). Fuel cells: History and updating. A walk along two centuries. Renewable and Sustainable Energy Reviews, 13(9), 2309-2322. https://doi.org/10.1016/j.rser.2009.03.015
  • 40. Nonobe, Y. (2017). Development of the fuel cell vehicle Mirai. IEEJ Transactions on Electrical and Electronic Engineering, 12(1), 5-9. https://doi.org/10.1002/tee.22328
  • 41. Wang, Y., Chen, K. S., Mishler, J., Cho, S. C., & Adroher, X. C. (2011). A review of polymer electrolyte membrane fuel cells: Technology, applications, and needs on fundamental research. Applied Energy, 88(4), 981-1007. https://doi.org/10.1016/j.apenergy.2010.09.030
  • 42. Qasem, N. A. A., & Abdulrahman, G. A. Q. (2024). A recent comprehensive review of fuel cells: History, types, and applications. International Journal of Energy Research, 2024(1), 7271748. https://doi.org/10.1155/2024/7271748
  • 43. Alaswad, A., Omran, A., Sodre, J. R., Wilberforce, T., Pignatelli, G., Dassisti, M., & et al. (2021). Technical and commercial challenges of proton-exchange membrane (PEM) fuel cells. Energies, 14, 144. https://doi.org/10.3390/en14010144
  • 44. Islam, M. R., Shabani, B., Rosengarten, G., & Andrews, J. (2015). The potential of using nanofluids in PEM fuel cell cooling systems: A review. Renewable and Sustainable Energy Reviews, 48, 523-539. https://doi.org/10.1016/j.rser.2015.04.018
  • 45. Alizadeh, E., Rahgoshay, S. M., Rahimi-Esbo, M., Khorshidian, M., & Saadat, S. H. M. (2016). A novel cooling flow field design for polymer electrolyte membrane fuel cell stack. International Journal of Hydrogen Energy, 41(20), 8525-8532. https://doi.org/10.1016/j.ijhydene.2016.03.187
  • 46. Erdinç, O., & Uzunoğlu, M. (2010). Recent trends in PEM fuel cell-powered hybrid systems: Investigation of application areas, design architectures and energy management approaches. Renewable and Sustainable Energy Reviews, 14(9), 2874-2884. https://doi.org/10.1016/j.rser.2010.07.060
  • 47. Khzouz, M., Gkanas, E. I., Shao, J., Sher, F., Behersky, D., El-Kharouf, A., & et al. (2020). Life cycle costing analysis: Tools and applications for determining hydrogen production cost for fuel cell vehicle technology. Energies, 13(15), 3783. https://doi.org/10.3390/en13153783
  • 48. Deng, Y., Liu, H., Lai, L., She, F., Liu, F., Li, M., & et al. (2025). Platinum-ruthenium bimetallic nanoparticle catalysts synthesized via direct joule heating for methanol fuel cells. Nano-Micro Small, 21(7), 2403967. https://doi.org/10.1002/smll.202403967
  • 49. Khatib, F. N., Wilberforce, T., Ijaodola, O., Ogungbemi, E., El-Hassan, Z., Durrant, A., & et al. (2019). Material degradation of components in polymer electrolyte membrane (PEM) electrolytic cell and mitigation mechanisms: A review. Renewable and Sustainable Energy Reviews, 111, 1-14. https://doi.org/10.1016/j.rser.2019.05.007
  • 50. Ellamla, H. R., Staffell, I., Bujlo, P., Pollet, B. G., & Pasupathi, S. (2015). Current status of fuel cell based combined heat and power systems for residential sector. Journal of Power Sources, 293, 312-328. https://doi.org/10.1016/j.jpowsour.2015.05.050
  • 51. Giorgi, L., & Leccese, F. (2013). Fuel cell: Technologies and applications. The Open Fuel Cells Journal, 6(1), 1-20. https://doi.org/10.2174/1875932720130719001
  • 52. Ermiş, K. (2023). Fuel cell and applications. Kaygusuz, K. (Ed.), Interdisciplinary Studies on Contemporary Research Practices in Engineering in the 21st Century-IV, 125-148. Özgür Yayınları, Gaziantep. https://doi.org/10.58830/ozgur.pub250.c1205
  • 53. Mancino, A. N., Menale, C., Vellucci, F., Pasquali, M., & Bubbico, R. (2023). PEM fuel cell applications in road transport. Energies, 16(17), 6129. https://doi.org/10.3390/en16176129
  • 54. Ding, D., & Wu, X. Y. (2024). Hydrogen fuel cell electric trains: Technologies, current status, and future. Applications in Energy and Combustion Science, 17, 100255. https://doi.org/10.1016/j.jaecs.2024.100255
  • 55. Sesu, D. C., Narendran, G., Ramakrishnan, S., Vediappan, K., Muthu, S. E., Shanmugan, S. & et al. (2025). Design and fabrication of micro-rlectromechanical system (MEMS)-based μ-DMFC (direct methanol fuel cells) for portable applications: An outlook. Electrochem, 6(2), 11. https://doi.org/10.3390/electrochem6020011
  • 56. Guo, Z., & Faghri, A. (2007). Vapor feed direct methanol fuel cells with passive thermal-fluids management system. Journal of Power Sources, 167(2), 378-390. https://doi.org/10.1016/j.jpowsour.2007.02.024
  • 57. Kazula, S., de Graaf, S., & Enghardt, L. (2023). Review of fuel cell technologies and evaluation of their potential and challenges for electrified propulsion systems in commercial aviation. Journal of the Global Power and Propulsion Society, 7, 43-57. https://doi.org/10.33737/jgpps/158036
  • 58. Cigolotti, V., Genovese, M., & Fragiacomo, P. (2021). Comprehensive review on fuel cell technology for stationary applications as sustainable and efficient poly-generation energy systems. Energies, 14(16), 4963. https://doi.org/10.3390/en14164963
  • 59. Perry, M. L., & Fuller, T. F. (2002). A historical perspective of fuel cell technology in the 20th century. Journal of The Electrochemical Society, 149(7), 59-67. https://doi.org/10.1149/1.1488651
  • 60. Ong, B. C., Kamarudin, S. C., & Basri, S. (2017). Direct liquid fuel cells: A review. International Journal of Hydrogen Energy, 42(15), 10142-10157. https://doi.org/10.1016/j.ijhydene.2017.01.117
  • 61. Verhaert, I., Mulder, G., & De Paepe, M. (2016). Evaluation of an alkaline fuel cell system as a micro-CHP. Energy Conversion and Management, 126, 434-445. https://doi.org/10.1016/j.enconman.2016.07.058
  • 62. Kumar, A., Singh, T., Singh, S., & Liu, Y. (2013). A comprehensive review of fuel cell and its types. International Journal of Research in Mechanical Engineering & Technology, 3(1), 13-21. https://doi.org/10.1155/2024/7271748
  • 63. Zeng, R., & Varcoe, J. R. (2011). Alkaline anion exchange membranes for fuel cells- A patent review. Recent Patents on Chemical Engineering, 4(2), 93-115. https://doi.org/10.2174/2211334711104020093
  • 64. Khade, A. R. (2014). Fuel cell technologies and applications. International Journal of Science and Research, 3(6), 978-982. https://dx.doi.org/10.21275/2014367
  • 65. Jawad, N. H., Yahya, A. A., Al-Shatr, A. R., Salih, H. G., Rashid, K. T., Al-Saadi, S., & et al. (2022). Fuel cell types, properties of membrane, and operating conditions: A review. Sustainability, 14(21), 14653. https://doi.org/10.3390/su142114653
  • 66. Al-Zaidi, M., Al-Khafaji, R. Q., Al-Zubaidy, D. K., & Salman, M. M. (2021). A review: Fuel cells types and their applications. International Journal of Scientific Engineering and Applied Science, 7(7), 375-190.
  • 67. Grew, K. N., Ren, X., & Chu, D. (2011). Effect of CO2 on the alkaline membrane fuel cell. ECS Transactions, 41(1), 1979. https://doi.org/10.1149/1.3635727
  • 68. Hamada, A. T., Orhan, M. F., & Kannan, A. M. (2023). Alkaline fuel cells: Status and prospects. Energy Reports, 9, 6396-6418. https://doi.org/10.1016/j.egyr.2023.05.276
  • 69. Ramasamy, P., Muruganantham, B., Rajasekaran, S., Babu, B. D., Ramkumar, R., Marthanda, A. V. A., & et al. (2024). A comprehensive review on different types of fuel cell and its applications. Bulletin of Electrical Engineering and Informatics, 13(2), 774-780. https://doi.org/10.11591/eei.v13i2.6348
  • 70. Sammes, N., Bove, R., & Stahl, K. (2004). Phosphoric acid fuel cells: Fundamentals and applications. Current Opinion in Solid State and Materials Science, 8(5), 372-378. https://doi.org/10.1016/j.cossms.2005.01.001
  • 71. Kumuk, B. (2019). A review of fuel cell types and applications. Turkish Journal of Energy Policy, 4(9), 1-9.
  • 72. Mekhilef, S., Saidur, R., & Safar, A. (2012). Comparative study of different fuel cell technologies. Renewable and Sustainable Energy Reviews, 16(1), 981-989. https://doi.org/10.1016/j.rser.2011.09.020
  • 73. Zervas, P. L., Tatsis, A., Sarimveis, H., & Markatos, N. C. G. (2008). Development of a novel computational tool for optimizing the operation of fuel cells systems: Application for phosphoric acid fuel cells. Journal of Power Sources, 185(1), 345-355. https://doi.org/10.1016/j.jpowsour.2008.06.081
  • 74. Du, Y., & Zhan, H. (2021). Analysis of related technologies used in fuel cell vehicles. Journal of Physics: Conference Series, 2125, 012011. https://doi.org/10.1088/1742-6596/2125/1/012011
  • 75. Singhal, S. C. (2000). Advances in solid oxide fuel cell technology. Solid State Ionics, 135(1-4), 305-313. https://doi.org/10.1016/S0167-2738(00)00452-5
  • 76. Dhingra, H., & Peppley, B. A. (2013). Sensitivity analysis of a 1 kw diesel-fuelled SOFC generator: A single and paired-variable study. Journal of Power Sources, 239, 527-537. https://doi.org/10.1016/j.jpowsour.2013.03.107
  • 77. Corigliano, O., Pagnotta, L., & Fragiacomo, P. (2022). On the technology of solid oxide fuel cell (SOFC) energy systems for stationary power generation: A review. Sustainability, 14(22), 15276. https://doi.org/10.3390/su142215276
  • 78. Zhang, X., Chan, S. H., Li, G., Ho, H. K., Li, J., & Feng, Z. (2010). A review of integration strategies for solid oxide fuel cells. Journal of Power Sources, 195(3), 685-702. https://doi.org/10.1016/j.jpowsour.2009.07.045
  • 79. Stambouli, A. B., & Traversa, E. (2002). Solid oxide fuel cells (SOFCs): A review of an environmentally clean and efficient source of energy. Renewable and Sustainable Energy Reviews, 6(5), 433-455. https://doi.org/10.1016/S1364-0321(02)00014-X
  • 80. Dwivedi, S. (2020). Solid oxide fuel cell: Materials for anode, cathode and electrolyte. International Journal of Hydrogen Energy, 45(44), 23988-24013. https://doi.org/10.1016/j.ijhydene.2019.11.234
  • 81. Sharaf, O. Z., & Orhan, M. F. (2014). An overview of fuel cell technology: Fundamentals and applications. Renewable and Sustainable Energy Reviews, 32, 810-853. https://doi.org/10.1016/j.rser.2014.01.012
  • 82. Halinen, M., & Pennanen, J. (2015). Analysis of leakages in a solid oxide fuel cell stack in a system environment. Fuel Cells, 15(2), 434-444. https://doi.org/10.1002/fuce.201400072
  • 83. Li, N., Poozhikunnath, A., Aindow, M., & Maric, R. (2015). Optimization of support materials for intermediate temperature molten carbonate fuel cells (IT-MCFC). ECS Meeting Abstracts, MA2015-01, 191. https://doi.org/10.1149/MA2015-01/1/191
  • 84. Sauzet, H., Collet, R., Héau, C., Pupier, C., Rodrigues, D., Cannes, C., & et al. (2022). Redox properties of the carbonate molten salt Li2CO3-Na2CO3-K2CO3. Electrochimica Acta, 405, 139765. https://doi.org/10.1016/j.electacta.2021.139765
  • 85. Brouwer, J., Jabbari, F., Leal, E. M., & Orr, T. (2006). Analysis of a molten carbonate fuel cell: Numerical modeling and experimental validation. Journal of Power Sources, 158(1), 213-224. https://doi.org/10.1016/j.jpowsour.2005.07.093
  • 86. Huang, H., Li, J., He, Z., Zeng, T., Kobayashi, N., & Kubota, M. (2015). Performance analysis of a MCFC/MGT hybrid power system bi-fueled by city gas and biogas. Energies, 8(6), 5661-5667. https://doi.org/10.3390/en8065661
  • 87. Mamaghani, A. H., Najafi, B., Shirazi, A., & Rinaldi, F. (2015). 4E analysis and multi-objective optimization of an ıntegrated MCFC (molten carbonate fuel cell) and ORC (organic rankine cycle) system. Energy, 82, 650-663. https://doi.org/10.1016/j.energy.2015.01.074
  • 88. Mirahmadi, A., & Akbari, H. (2012). A noble method for molten carbonate fuel cells electrolyte manufacturing. Journal of Solid State Electrochemistry, 16, 931-936. https://doi.org/10.1007/s10008-011-1461-1
  • 89. Giulio, N. D., Bosio, B., Cigolotti, V., & Nam, S. W. (2012). Experimental and theoretical analysis of H2S effects on MCFCs. International Journal of Hydrogen Energy, 37(24), 19329-19336. https://doi.org/10.1016/j.ijhydene.2012.03.086
  • 90. Xing, H., Stuart, C., Spence, S., & Chen, H. (2021). Fuel cell power systems for maritime applications: Progress and perspectives. Sustainability, 13(3), 1213. https://doi.org/10.3390/su13031213
  • 91. Wilberforce, T., Olabi, A. G., Muhammad, I., Alaswad, A., Sayed, E. T., Abo-Khalil, A. G., & et al. (2024). Recovery of waste heat from proton exchange membrane fuel cells-A review. International Journal of Hydrogen Energy, 52(Part C), 933-972. https://doi.org/10.1016/j.ijhydene.2022.08.069
  • 92. Rosli, R. E., Sulong, A. B., Daud, W. R. W., Zulkifley, M. A., Husaini, T., Rosli, M. I., & et al. (2017). A review of high-temperature proton exchange membrane fuel cell (HT-PEMFC) system. International Journal of Hydrogen Energy, 42, 9293-9314. https://doi.org/10.1016/j.ijhydene.2016.06.211
  • 93. Das, S. K., Reis, A., & Berry, K. J. (2009). Experimental evaluation of CO poisoning on the performance of a high temperature proton exchange membrane fuel cell. Journal of Power Sources, 193(2), 691-698. https://doi.org/10.1016/j.jpowsour.2009.04.021
  • 94. Ali, A. B. M., Nemah, A. K., Al Bahadli, Y. A., & Kianfar, E. (2024). Principles and performance and types, advantages and disadvantages of fuel cells: A review. Case Studies in Chemical and Environmental Engineering, 10, 100920. https://doi.org/10.1016/j.cscee.2024.100920
  • 95. Abedin, T., Pasupuleti, J., Paw, J. K. S., Tak, Y. C., Mahmud, M., Abdullah, M. P., & et al. (2025). Proton exchange membrane fuel cells in electric vehicles: Innovations, challenges, and pathways to sustainability. Journal of Power Sources, 640, 236769. https://doi.org/10.1016/j.jpowsour.2025.236769
  • 96. Bilen, K., Tarhan, B. C., & Çelik, S. (2023). Numerical investigation of the effect of operating conditions on the performance parameters of PEM fuel cells. International Journal of Energy Studies, 8(3), 491-512. https://doi.org/10.58559/ijes.1264797
  • 97. Madheswaran, D. K., & Jayakumar, A. (2021). Recent advancements on non-platinum based catalyst electrode material for polymer electrolyte membrane fuel cells: A mini techno-economic review. Bulletin of Materials Science, 44, 287. https://doi.org/10.1007/s12034-021-02572-6
  • 98. Kazim, A. (2005). Exergoeconomic analysis of a PEM fuel cell at various operating conditions. Energy Conversion and Management, 46(7-8), 1073-1081. https://doi.org/10.1016/j.enconman.2004.06.036
  • 99. Pei, P., Xu, Y., Wang, M., & Ren, P. (2024). Effects of carbon monoxide on proton exchange membrane fuel cells and elimination techniques. International Journal of Hydrogen Energy, 69, 1287-1304. https://doi.org/10.1016/j.ijhydene.2024.05.155
  • 100. Harun, N. A. M., Shaari, N., & Zaiman, N. F. H. N. (2021). A review of alternative polymer electrolyte membrane for fuel cell application based on sulfonated poly(ether ether ketone). International Journal of Energy Research, 45(14), 19671-19708. https://doi.org/10.1002/er.7048
  • 101. Hogarth, M. P., & Ralph, T. R. (2002). Catalysis for low temperature fuel cells, Part III: Challenges for the direct methanol fuel cell. Platinum Metals Review, 46(4), 146-164. https://doi.org/10.1595/003214002X464146164
  • 102. Hosseinpour, M., Sahoo, M., Perez-Page, M., Baylis, S. R., Patel, F., & Holmez, S. M. (2019). Improving the performance of direct methanol fuel cells by implementing multilayer membranes blended with cellulose nanocrystals. International Journal of Hydrogen Energy, 44(57), 30409-30419. https://doi.org/10.1016/j.ijhydene.2019.09.194
  • 103. Tamer, M., Akyalçın, S., & Akyalçın, L. (2024). Recent progresses and challenges to determine properties of sulfonated polyether ether ketone based electrolytes for direct methanol fuel cell applications. ChemElectroChem, 11(23), e202400345. https://doi.org/10.1002/celc.202400345
  • 104. Spragg, R., & Li, X. (2024). Vapor-feed direct methanol fuel cells using pure methanol. Energy Conversion and Management: X, 24, 100746. https://doi.org/10.1016/j.ecmx.2024.100746
  • 105. Xia, Z., Zhang, X., Sun, H., Wang, S., & Sun, G. (2019). Recent advances in multi-scale design and construction of materials for direct methanol fuel cells. Nano Energy, 65, 104048. https://doi.org/10.1016/j.nanoen.2019.104048
  • 106. Ahmed, A. A., Labadidi, M. A., Hamada, A. T., & Orhan, M. F. (2022). Design and utilization of a direct methanol fuel cell. Membranes, 12(12), 1266. https://doi.org/10.3390/membranes12121266
  • 107. Zhao, L., & Jiang, Y. (2025). Sustainable anodes for direct methanol fuel cells: Advancing beyond platinum scarcity with low-pt alloys and non-pt systems. Sustainability, 17(11), 5086. https://doi.org/10.3390/su17115086
  • 108. Seo, S. H., & Lee, C. S. (2010). A study on the overall efficiency of direct methanol fuel cell by methanol crossover current. Applied Energy, 87(8), 2597-2604. https://doi.org/10.1016/j.apenergy.2010.01.018
  • 109. Xia, Z., Sun, R., Jing, F., Wang, S., Sun, H., & Sun, G. (2018). Modeling and optimization of scaffold-like macroporous electrodes for highly efficient direct methanol fuel cells. Applied Energy, 221, 239-248. https://doi.org/10.1016/j.apenergy.2018.03.100
  • 110. Eriş Dalğıç, A. (2022). PEM yakıt hücrelerinde kullanılmak üzere PES blend membran üretimi ve karakterizasyonu. Master’s thesis, Gazi University, Graduate School of Natural and Applied Sciences, Ankara, Türkiye.
  • 111. Devrim, Y. (2006). Alternatif yöntemler kullanılarak proton değişim membran yakıt hücreleri için yeni membranların geliştirilmesi. Doctoral thesis, Hacettepe University, Graduate School of Natural and Applied Sciences, Ankara, Türkiye.
  • 112. Çalı, A. (2023). Proton değişim membranlı yakıt pilleri için membran sentezi ve karakterizasyonu. Doctoral thesis, Gazi University, Graduate School of Natural and Applied Sciences, Ankara, Türkiye.
  • 113. Liu, L., Liu, T., Ding, F., Zhang, H., Zheng, H., & Li, Y. (2021). Exploration of the polarization curve for proton-exchange membrane fuel cells. ACS Applied Materials & Interfaces, 13(49), 58838-58847. https://doi.org/10.1021/acsami.1c20289
  • 114. Bagherabadi, K. M., Skjong, S., & Pedersen, E. (2022). Dynamic modelling of PEM fuel cell system for simulation and sizing of marine power systems. International Journal of Hydrogen Energy, 47(40), 17699-17712. https://doi.org/10.1016/j.ijhydene.2022.03.247
  • 115. Strametz, F., Wallnöfer-Ogris, E., Schutting, E., & Trattner, A. (2025). From theory to operation: A systematic loss analysis framework for fuel cell systems. Journal of Power Sources, 654, 237804. https://doi.org/10.1016/j.jpowsour.2025.237804
  • 116. Yan, Q., Toghiani, H., & Causey, H. (2006). Steady state and dynamic performance of proton exchange membrane fuel cells (PEMFCs) under various operating conditions and load changes. Journal of Power Sources, 161(1), 492-502. https://doi.org/10.1016/j.jpowsour.2006.03.077
  • 117. Badduri, S. R., Srinivasulu, C. N., & Rao, S. S. (2019). Experimental analysis of PEM fuel cell performance using lung channel design bipolar plate. International Journal of Green Energy, 16(15), 1591-1601. https://doi.org/10.1080/15435075.2019.1677238
  • 118. Hao, D., Shen, J., Hou, Y., Zhou, Y., & Wang, H. (2016). An improved empirical fuel cell polarization curve model based on review analysis. International Journal of Chemical Engineering, 2016(1), 4109204. https://doi.org/10.1155/2016/4109204
  • 119. Şahin, A. (2013). Yakıt hücrelerinde kullanmak üzere nanokompozit membran sentezi ve karakterizasyonu. Doctoral thesis, Gazi University, Graduate School of Natural and Applied Sciences, Ankara, Türkiye.
  • 120. Radha, M. A. (2018). Synthesis and characterization of hydrocarbon based nanocomposite membrane for PEM fuel cells. Doctoral thesis, Selçuk University, Graduate School of Natural and Applied Sciences, Konya, Türkiye.
  • 121. Bernhard, D., Kadyk, T., Kirsch, S., Scholz, H., & Krewer, U. (2023). Model-assisted analysis and prediction of activity degradation in PEM-fuel cell cathodes. Journal of Power Sources, 562, 232771. https://doi.org/10.1016/j.jpowsour.2023.232771
  • 122. Salva, J. A., Iranzo, A., Rosa, F., Tapia, E., Lopez, E., & Isorna, F. (2016). Optimization of a PEM fuel cell operating conditions: obtaining the maximum performance polarization curve. International Journal of Hydrogen Energy, 41(43), 19713-19723. https://doi.org/10.1016/j.ijhydene.2016.03.136
  • 123. Akay, R. G. (2008). Development and characterization of composite proton exchange membranes for fuel cell applications. Doctoral thesis, Middle East Technical University, Graduate School of Natural and Applied Sciences, Ankara, Türkiye.
  • 124. Tang, Y., Zhang, J., Song, C., Liu, H., Zhang, J., Wang, H., & et al. (2006). Temperature dependent performance and in situ AC impedance of high-temperature PEM fuel cells using the Nafion-112 membrane. Journal of The Electrochemical Society, 153(11), A2036. https://doi.org/10.1149/1.2337008
  • 125. Williams, V. M., Kunz, H. R., & Fenton, J. M. (2005). Analysis of polarization curves to evaluate polarization sources in hydrogen/air PEM fuel cells. Journal of The Electrochemical Society, 152(3), A635. https://doi.org/10.1149/1.1860034
  • 126. Bezmalinovic, D., Simic, B., & Barbir, F. (2015). Characterization of PEM fuel cell degradation by polarization change curves. Journal of Power Sources, 294, 82-87. https://doi.org/10.1016/j.jpowsour.2015.06.047
  • 127. Thosar, A. U., Agarwal, H., Govarthan, S., & Lele, A. K. (2019). Comprehensive analytical model for polarization curve of a PEM fuel cell and experimental validation. Chemical Engineering Science, 206, 96-117. https://doi.org/10.1016/j.ces.2019.05.022
  • 128. Cheng, X., Shi, Z., Glass, N., Zhang, L., Zhang, J., Song, D., & et al. (2007). A review of PEM hydrogen fuel cell contamination: Impacts, mechanisms, and mitigation. Journal of Power Sources, 165(2), 739-756. https://doi.org/10.1016/j.jpowsour.2006.12.012
  • 129. Kahraman, H., & Akın, Y. (2024). Recent studies on proton exchange membrane fuel cell components, review of the literature. Energy Conversion and Management, 304, 118244. https://doi.org/10.1016/j.enconman.2024.118244
  • 130. Mariani, M., Peressut, A. B., Latorrata, S., Balzarotti, R., Sansotera, M., & Dotelli, G. (2021). The role of fluorinated polymers in the water management of proton exchange membrane fuel cells: A review. Energies, 14(24), 8387. https://doi.org/10.3390/en14248387
  • 131. Kuan, Y. D., Lyu, J. L., Ke, T. R., Sung, M. F., & Do, J. S. (2019). Planar current collector design and fabrication for proton exchange membrane fuel cell. International Journal of Hydrogen Energy, 44(20), 10071-10081. https://doi.org/10.1016/j.ijhydene.2018.12.178
  • 132. Asghari, S., Shahsamandi, M. H., & Ashraf Khorasani, M. R. (2010). Design and manufacturing of end plates of a 5 kW PEM fuel cell. International Journal of Hydrogen Energy, 35(17), 9291-9297. https://doi.org/10.1016/j.ijhydene.2010.02.135
  • 133. Zhao, J., Guo, H., Xing, Y., Ping, S., Lin, W., Yang, Y., & et al. (2023). A review on the sealing structure and materials of fuel-cell stacks. Clean Energy, 7(1), 59-69. https://doi.org/10.3390/wevj15080358
  • 134. Zhang, Y., Wang, J., & Yao, Z. (2023). Recent development of fuel cell core components and key materials: A review. Energies, 16(5), 2099. https://doi.org/10.3390/en16052099
  • 135. Li, X., & Sabir, I. (2005). Review of bipolar plates in PEM fuel cells: Flow-field designs. International Journal of Hydrogen Energy, 30(4), 359-371. https://doi.org/10.1016/j.ijhydene.2004.09.019
  • 136. Antunes, R. A., Oliveria, M. C. L., Ett, G., & Ett, V. (2010). Corrosion of metal bipolar plates for PEM fuel cells: A review. International Journal of Hydrogen Energy, 35(8), 3632-3647. https://doi.org/10.1016/j.ijhydene.2010.01.059
  • 137. Ji, S., Hwang, Y. S., Park, T., Lee, Y. H., Paek, L. Y., Chang, I., & et al. (2012). Graphite foil based assembled bipolar plates for polymer electrolyte fuel cells. International Journal of Precision Engineering and Manufacturing, 13, 2183-2186. https://doi.org/10.1007/s12541-012-0289-7
  • 138. Wang, Y., Diaz, D. F. R., Chen, K. S., Wang, Z., & Adroher, X. C. (2000). Materials, technological status, and fundamentals of PEM fuel cells - A review. Materials Today, 32, 178-203. https://doi.org/10.1016/j.mattod.2019.06.005
  • 139. Irshad, H. M., & Shahgaldi, S. (2025). Comprehensive review of bipolar plates for proton exchange membrane fuel cells with a focus on materials, processing methods and characteristics. International Journal of Hydrogen Energy, 111, 462-487. https://doi.org/10.1016/j.ijhydene.2025.02.300
  • 140. Wang, Y., Seo, B., Wang, B., Zamel, N., Jiao, K., & Adroher, X. C. (2020). Fundamentals, materials, and machine learning of polymer electrolyte membrane fuel cell technology. Energy and AI, 1, 100014. https://doi.org/10.1016/j.egyai.2020.100014
  • 141. Omrani, R., & Shabani, B. (2017). Gas diffusion layer modifications and treatments for ımproving the performance of proton exchange membrane fuel cells and electrolysers: A review. International Journal of Hydrogen Energy, 42(47), 28515-28536. https://doi.org/10.1016/j.ijhydene.2017.09.132
  • 142. Chen, Y., Liu, Y., Xu, Y., Gup, X., Cao, Y., & Ming, W. (2022). Review: Modeling and simulation of membrane electrode material structure for proton exchange membrane fuel cells. Coatings, 12(8), 1145. https://doi.org/10.3390/coatings12081145
  • 143. Qi, Z., & Kaufman, A. (2002). Improvement of water management by a microporous sublayer for PEM fuel cells. Journal of Power Sources, 109(1), 38-46. https://doi.org/10.1016/S0378-7753(02)00058-7
  • 144. Shi, Q., Feng, C., Ming, P., Tang, F., & Zhang, C. (2022). Compressive stress and its ımpact on the gas diffusion layer: A review. International Journal of Hydrogen Energy, 47(6), 3994-4009. https://doi.org/10.1016/j.ijhydene.2021.10.058
  • 145. Csoklich, C., Sabharwal, M., Schmidt, T. J., & Büchi, F. N. (2022). Does the thermal conductivity of gas diffusion layer matter in polymer electrolyte fuel cells?. Journal of Power Sources, 540, 231539. https://doi.org/10.1016/j.jpowsour.2022.231539
  • 146. Dao, D. V., Adilbish, G., Le, T. D., Lee, I. H., & Yu, Y. T. (2019). Triple phase boundary and power density enhancement in PEMFCs of a Pt/C electrode with double catalyst layers. RSC Advances, 9(27), 15635-15641. https://doi.org/10.1039/C9RA01741K
  • 147. Okonkwo, P. C. (2025). Proton exchange membrane fuel cell catalyst layer degradation mechanisms: A succinct review. Catalysts, 15(1), 97. https://doi.org/10.3390/catal15010097
  • 148. Min, T., Zhang, R., Chen, L., & Zhou, Q. (2023). Reactive transport processes in proton exchange membrane fuel cells. Encyclopedia, 3(2), 746-758. https://doi.org/10.3390/encyclopedia3020054
  • 149. Cullen, D. A., Neyerlin, K. C., Ahluwalia, R. K., Mukundan, R., More, K. L., Borup, R. L., & et al. (2021). New roads and challenges for fuel cells in heavy-duty transportation. Nature Energy, 6, 462-474. https://doi.org/10.1038/s41560-021-00775-z
  • 150. Manso, A. P., Marzo, F. F., Barranco, J., Garikano, X., & Mujika, M. G. (2012). Influence of geometric parameters of the flow fields on the performance of a PEM fuel cell. A review. International Journal of Hydrogen Energy, 37(20), 15256-15287. https://doi.org/10.1016/j.ijhydene.2012.07.076
  • 151. Araya, S. S., Zhou, F., Liso, V., Sahlin, S. L., Vang, J. R., Thomas, S., & et al. (2016). A comprehensive review of PBI-based high temperature PEM fuel cell. International Journal of Hydrogen Energy, 41(46), 21310-21344. https://doi.org/10.1016/j.ijhydene.2016.09.024
  • 152. Deng, X., Ma, L., Wang, C., Ye, H., Cao, L., Zhan, X., & et al. (2025). Recent progress in materials design and fabrication techniques for membrane electrode assembly in proton exchange membrane fuel cells. Catalysts, 15(1), 74. https://doi.org/10.3390/catal15010074
  • 153. Mo, S., Du, L., Huang, Z., Chen, J., Zhou, Y., Wu, P., & et al. (2023). Recent advances on PEM fuel cells: From key materials to membrane electrode assembly. Electrochemical Energy Reviews, 6, 28. https://doi.org/10.1007/s41918-023-00190-w
  • 154. Kang, B. G., Kwon, Y. R., Hong, K. W., Kwon, S. K., Lee, H. M., Song, D. K., & et al. (2025). Performance improvement of proton exchange membrane fuel cells with a TiO2 sputtered gas diffusion layer under low-humidity conditions. Energies, 18(6), 1525. https://doi.org/10.3390/en18061525
  • 155. Arslan, T. A., Bayrakçeken, H., Solmaz, H., Taşkın, G., Tabanlıgil Calam, T., Calam, A., & et al. (2025). Development and characterization of sulfonated poly(sulfone)/poly(styrene-co-acrylonitrile) composite blend membranes for enhanced proton conductivity. Process Safety and Environmental Protection, 201(Part B), 107607. https://doi.org/10.1016/j.psep.2025.107607
  • 156. Zhang, J., Litteer, B. A., Gu, W., Liu, H., & Gasteiger, H. A. (2007). Effect of hydrogen and oxygen partial pressure on Pt precipitation within the membrane of PEMFCs. Journal of The Electrochemical Society, 154, B1006. https://doi.org/10.1149/1.2764240
  • 157. Smitha, B., Sridhar, S., & Khan, A. A. (2005). Proton conducting composite membranes from polysulfone and heteropolyacid for fuel cell applications. Journal of Polymer Science Part B: Polymer Physics, 43(12), 1538-1547. https://doi.org/10.1002/polb.20450
  • 158. Motupally, S., Becker, A., & Weidner, J. W. (2000). Diffusion of water in Nafion 115 membranes. Journal of The Electrochemical Society, 147(9), 3171. https://doi.org/10.1149/1.1393879
  • 159. Kraytsberg, A., & Ein-Eli, Y. (2014). Review of advanced materials for proton exchange membrane fuel cells. Energy & Fuels, 28(12), 7303-7330. https://doi.org/10.1021/ef501977k
  • 160. Teixeira, F. C., Sá, A. I., Teixeira, A. P. S., Ortiz-Martínez, V. M., Ortiz, A., Ortiz, I., & et al. (2021). New modified Nafion-bisphosphonic acid composite membranes for enhanced proton conductivity and pemfc performance. International Journal of Hydrogen Energy, 46(33), 17562-17571. https://doi.org/10.1016/j.ijhydene.2020.01.212
  • 161. Esmaeilli, N., Gray, E. M., & Webb, C. J. (2019). Non-fluorinated polymer composite proton exchange membranes for fuel cell applications - A review. ChemPhysChem, 20, 2016-2053. https://doi.org/10.1002/cphc.201900191
  • 162. Sinirlioğlu, D., Ünügür Çelik, S., Müftüoğlu, A. E., & Bozkurt, A. (2015). Novel composite polymer electrolyte membranes based on poly(vinyl phosphonic acid) and poly (5-(methacrylamido)tetrazole). Polymer Engineering and Science, 55(2), 260-269. https://doi.org/10.1002/pen.23890
  • 163. Awang, N., Ismail, A. F., Jaafar, J., Matsuura, T., Junoh, H., Othman, M. H. D., & et al. (2015). Functionalization of polymeric materials as a high performance membrane for direct methanol fuel cell: A review. Reactive and Functional Polymers, 86, 248-258. https://doi.org/10.1016/j.reactfunctpolym.2014.09.019
  • 164. Peighambardoust, S. J., Rowshanzamir, S., & Amjadi, M. (2010). Review of the proton exchange membranes for fuel cell applications. International Journal of Hydrogen Energy, 35, 9349-9384. https://doi.org/10.1016/j.ijhydene.2010.05.017
  • 165. Segale, M., Seadira, T., Sigwadi, R., Mokrani, T., & Summers, G. (2024). A new frontier towards the development of efficient SPEEK polymer membranes for PEM fuel cell applications: A review. Materials Advances, 5, 7979-8006. https://doi.org/10.1039/D4MA00628C
  • 166. Balogun, E., & Holdcroft, S. (2023). Impact of conditioning protocol on hydrocarbon-based solid polymer electrolyte fuel cells. Journal of Power Sources, 570, 233008. https://doi.org/10.1016/j.jpowsour.2023.233008
  • 167. Pivovar, B., Wang, Y., & Cussler, E. L. (1999). Pervaporation membranes in direct methanol fuel cells. Journal of Membrane Science, 154(2), 155-162. https://doi.org/10.1016/S0376-7388(98)00264-6
  • 168. Hong, S. J., Jung, H. Y., Yoon, S. J., Oh, K. H., Oh, S. G., Hong, Y. T., & et al. (2022). Constrained hydrocarbon-based ionomers in porous poly(tetrafluoroethylene) supports for enhanced durability of polymer electrolyte membrane fuel cells and water electrolyzers. Journal of Power Sources, 551, 232221. https://doi.org/10.1016/j.jpowsour.2022.232221
  • 169. Giffin, G. A., Galbiati, S., Walter, M., Aniol, K., Ellwein, C., Kerres, J., & et al. (2017). Interplay between structure and properties in acid-base blend PBI-Based membranes for HT-PEM fuel cells. Journal of Membrane Science, 535, 122-131. https://doi.org/10.1016/j.memsci.2017.04.019
  • 170. Yang, X., Huang, L., Deng, Q., & Dong, W. (2024). A sustainable and eco-friendly membrane for PEM fuel cells using bacterial cellulose. Polymers, 16(21), 3017. https://doi.org/10.3390/polym16213017
  • 171. Beuscher, U., Cleghorn, S. J. C., & Johnson, W. B. (2005). Challenges for PEM fuel cell membranes. International Journal of Energy Research, 29, 1103-1112. https://doi.org/10.1002/er.1142
  • 172. Seng, L. K., Masdar, M. S., & Shyuan, L. K. (2021). Ionic liquid in phosphoric acid-doped polybenzimidazole (PA-PBI) as electrolyte membranes for PEM fuel cells: A review. Membranes, 11(10), 728. https://doi.org/10.3390/membranes11100728
  • 173. Shaari, N., & Kamarudin, S. K. (2019). Recent advances in additive‐enhanced polymer electrolyte membrane properties in fuel cell applications: An overview. International Journal of Energy Research, 43, 2756-2794. https://doi.org/10.1002/er.4348
  • 174. Jiao, K., & Li, X. (2011). Water transport in polymer electrolyte membrane fuel cells. Progress in Energy and Combustion Science, 37, 221-291. https://doi.org/10.1016/j.pecs.2010.06.002
  • 175. Hickner, M. A., Ghassemi, H., Kim, Y. S., Einsla, B. R., & McGrath, J. E. (2004). Alternative polymer systems for proton exchange membranes (PEMs). Chemical Reviews, 104(10), 4587-4612. https://doi.org/10.1021/cr020711a
  • 176. Antolini, E., & Gonzalez, E. R. (2010). Alkaline direct alcohol fuel cells. Journal of Power Sources, 195(11), 3431-3450. https://doi.org/10.1016/j.jpowsour.2009.11.145
  • 177. Branco, C. M., Sharma, S., de Camargo Forte, M. M., & Steinberger-Wilckens, R. (2016). New approaches towards novel composite and multilayer membranes for ıntermediate temperature-polymer electrolyte fuel cells and direct methanol fuel cells. Journal of Power Sources, 316, 139-159. https://doi.org/10.1016/j.jpowsour.2016.03.052
  • 178. Varcoe, J. R., & Slade, R. C. T. (2005). Prospects for alkaline anion-exchange membranes in low temperature fuel cells. Fuel Cells, 5, 187-200. https://doi.org/10.1002/fuce.200400045
  • 179. Olbrich, W., Kadyk, T., Sauter, U., Eikerling, M., & Gostick, J. (2023). Structure and conductivity of ionomer in PEM fuel cell catalyst layers: A model-based analysis. Scientific Reports, 13, 14127. https://doi.org/10.1038/s41598-023-40637-0
  • 180. Bhosale, A. C., Ghosh, P. C., & Assaud, L. (2020). Preparation methods of membrane electrode assemblies for proton exchange membrane fuel cells and unitized regenerative fuel cells: A review. Renewable and Sustainable Energy Reviews, 133, 110286. https://doi.org/10.1016/j.rser.2020.110286
  • 181. Wang, G., Kang, J., Yang, S., Lu, M., & Wei, H. (2024). Influence of structure construction on water uptake, swelling, and oxidation stability of proton exchange membranes. International Journal of Hydrogen Energy, 50(Part C), 279-311. https://doi.org/10.1016/j.ijhydene.2023.08.129
  • 182. Paciocco, J., Cawte, T., & Bazylak, A. (2023). Predicting optimal membrane hydration and ohmic losses in operating fuel cells with machine learning. Journal of Power Sources, 573, 23319. https://doi.org/10.1016/j.jpowsour.2023.233119
  • 183. Taufiq Musa, M., Shaari, N., & Kamarudin, S. K. (2021). Carbon nanotube, graphene oxide and montmorillonite as conductive fillers in polymer electrolyte membrane for fuel cell: An overview. International Journal of Energy Research, 45, 1309-1346. https://doi.org/10.1002/er.5874
  • 184. Abbou, S., Tajiri, K., Medici, E., Haug, A. T., & Allen, J. S. (2018). Liquid water uptake and contact angle measurement of proton exchange membrane fuel cell (PEMFC) electrodes. ECS Transactions, 86(13), 163. https://doi.org/10.1149/08613.0163ecst
  • 185. Pan, H., Chen, S., Zhang, Y., Jin, M., Chang, Z., & Pu, H. (2015). Preparation and properties of the cross-linked sulfonated polyimide containing benzimidazole as electrolyte membranes in fuel cells. Journal of Membrane Science, 476, 87-94. https://doi.org/10.1016/j.memsci.2014.11.023
  • 186. Vishal Gupta, N., & Shivakumar, H. G. (2011). Investigation of swelling behavior and mechanical properties of a pH-sensitive superporous hydrogel composite. Iranian Journal of Pharmaceutical Research, 11(2), 481-493.
  • 187. Adamski, M., Peressin, N., & Holfcroft, S. (2021). On the evolution of sulfonated polyphenylenes as proton exchange membranes for fuel cells. Materials Advances, 2, 4966-5005. https://doi.org/10.1039/D1MA00511A
  • 188. Singh, Y., White, R. T., Najm, M., Haddow, T., Pan, V., Orfino, F. P., & et al. (2019). Tracking the evolution of mechanical degradation in fuel cell membranes using 4D in situ visualization. Journal of Power Sources, 412, 224-237. https://doi.org/10.1016/j.jpowsour.2018.11.049
  • 189. Barclay Satterfield, M., Majsztrik, P. W., Ota, H., Benziger, J. B., & Bocarsly, A. B. (2006). Mechanical properties of Nafion and titania/Nafion composite membranes for polymer electrolyte membrane fuel cells. Journal of Polymer Science, Part B: Polymer Physics, 44(16), 2327-2345. https://doi.org/10.1002/polb.20857
  • 190. Othman, M. H., Ismail, A. F., & Mustafa, A. I. (2010). Recent development of polymer electrolyte membranes for direct methanol fuel cell application - A review. Malaysian Polymer Journal, 5(2), 1-36.
  • 191. Ahmad, S., Nawaz, T., Ali, A., Orhan, M. F., Samreen, A., & Kannan, A. M. (2022). An overview of proton exchange membranes for fuel cells: Materials and manufacturing. International Journal of Hydrogen Energy, 47(44), 19086-19131. https://doi.org/10.1016/j.ijhydene.2022.04.099
  • 192. Mirfarsi, S. H., Kumar, A., Jeong, J., Adamski, M., McDermid, S., Britton, B., & et al. (2024). High-temperature stability of hydrocarbon-based Pemion® proton exchange membranes: A thermo-mechanical stability study. International Journal of Hydrogen Energy, 50(Part B), 1507-1522. https://doi.org/10.1016/j.ijhydene.2023.07.236
  • 193. Tripathi, B. P., & Shahi, V. K. (2011). Organic-inorganic nanocomposite polymer electrolyte membranes for fuel cell applications. Progress in Polymer Science, 36, 945-979. https://doi.org/10.1016/j.progpolymsci.2010.12.005
  • 194. Gubler, L., Dockheer, S. M., & Koppenol, W. H. (2011). Radical (HO•, H• and HOO•) formation and ionomer degradation in polymer electrolyte fuel cells. Journal of The Electrochemical Society, 158(7), B755. https://doi.org/10.1149/1.3581040
  • 195. Liu, W., & Zuckerbrod, D. (2005). In situ detection of hydrogen peroxide in PEM fuel cells. Journal of The Electrochemical Society, 152, A1165. https://doi.org/10.1149/200421.0492PV
  • 196. Vielstich, W., Lamm, A., & Gasteiger, H. A. (Eds.). (2003). Handbook of fuel cells: fundamentals, technology and applications. Wiley-VCH, Weinheim.
  • 197. Xiao, S., Zhang, H., Li, X., & Mai, Z. (2011). Investigation of the differences between the in situ open circuit voltage test and ex situ fenton test for PEM oxidation characterization. International Journal of Hydrogen Energy, 36(17), 10934-10939. https://doi.org/10.1016/j.ijhydene.2011.05.182
  • 198. Arena, F., Mitzel, J., & Hempelmann, R. (2013). Permeability and diffusivity measurements on polymer electrolyte membranes. Fuel Cells, 13, 58-64. https://doi.org/10.1002/fuce.201200116
  • 199. Andreadis, G., & Tsiakaras, P. (2006). Ethanol crossover and direct ethanol PEM fuel cell performance modeling and experimental validation. Chemical Engineering Science, 61(22), 7497-7508. https://doi.org/10.1016/j.ces.2006.08.028
  • 200. Baschetti, M. G., Minelli, M., Catalano, J., & Sarti, G. C. (2013). Gas permeation in perflurosulfonated membranes: Influence of temperature and relative humidity. International Journal of Hydrogen Energy, 38(27), 11973-11982. https://doi.org/10.1016/j.ijhydene.2013.06.104
  • 201. Bender, G., Angelo, M., Bethune, K., Dorn, S., Thampan, T., & Rocheleau, R. (2009). Method using gas chromatography to determine the molar flow balance for proton exchange membrane fuel cells exposed to impurities. Journal of Power Sources, 193(2), 713-722. https://doi.org/10.1016/j.jpowsour.2009.04.028
  • 202. Möller, L., Rink, M., Kemmer, H., & von Unwerth, T. (2024). Comparing PEMFC state-of-health characteristics obtained by galvanostatic charge method with and without nitrogen flush. Journal of Power Sources, 622, 235366. https://doi.org/10.1016/j.jpowsour.2024.235366
  • 203. Smitha, B., Sridhar, S., & Khan, A. A. (2005). Solid polymer electrolyte membranes for fuel cell applications-A review. Journal of Membrane Science, 259(1-2), 10-26. https://doi.org/10.1016/j.memsci.2005.01.035
  • 204. Wei, P., Sui, Y., Meng, X., & Zhou, Q. (2023). The advances development of proton exchange membrane with high proton conductivity and balanced stability in fuel cells. Journal of Applied Polymer Science, 140(22), e53919. https://doi.org/10.1002/app.53919
  • 205. Lade, H., Kumar, V., Arthanaeeswaran, G., & Ismail, A. F. (2017). Sulfonated poly(arylene ether sulfone) nanocomposite electrolyte membrane for fuel cell applications: A review. International Journal of Hydrogen Energy, 42(2), 1063-1074. https://doi.org/10.1016/j.ijhydene.2016.10.038
  • 206. Choi, P., Jalani, N. H., & Datta, R. (2005). Thermodynamics and proton transport in nafion: II. Proton diffusion mechanisms and conductivity. Journal of The Electrochemical Society, 152(3), E123-E130. https://doi.org/10.1149/1.1859814
  • 207. Tsushima, S., Teranishi, K., & Hirai, S. (2006). Experimental elucidation of proton conducting mechanism in a polymer electrolyte membrane of fuel cell by nuclei labeling MRI. ECS Transactions, 3(1), 91. https://doi.org/10.1149/1.2356127
  • 208. Chen, L., He, Y., & Tao, W. (2014). The temperature effect on the diffusion processes of water and proton in the proton exchange membrane using molecular dynamics simulation. Numerical Heat Transfer, Part A: Applications, 65(3), 216-228. https://doi.org/10.1080/10407782.2013.784677
  • 209. De Grotthuss, C. J. T. (1806). Sur la décomposition de l’eau et des corps qu’elle tient en dissolution à l’aide de l’électricité galvanique. Annales de Chimie, 58, 54-73.
  • 210. Rangel-Cárdenas, A. L., & Koper, G. J. M. (2017). Transport in proton exchange membranes for fuel cell applications - A systematic non-equilibrium approach. Materials, 10, 576. https://doi.org/10.3390/ma10060576
  • 211. Spohr, E. (2005). Proton transport in polymer electrolyte fuel cell membranes. Henderson, D., Holovko, M., & Trokhymchuk, A. (Eds.), Ionic Soft Matter: Modern Trends in Theory and Applications, 361-380. Springer, Dordrecht.
  • 212. Erkartal, M. (2015). Proton conductive polymer/metal organic framework composite membranes. Master’s thesis, Abdullah Gül University, Graduate School of Natural and Applied Sciences, Kayseri, Türkiye.
  • 213. Kreuer, K. D., Rabenau, A., & Weppner, W. (1982). Vehicle mechanism, a new model for the ınterpretation of the conductivity of fast proton conductors. Angewandte Chemie-International Edition in English, 21(3), 208-209. https://doi.org/10.1002/anie.198202082
  • 214. Peckham, T. J., & Holdcroft, S. (2010). Structure-morphology-property relationships of non-perfluorinated proton-conducting membranes. Advanced Materials, 22(42), 4667-4690. https://doi.org/10.1002/adma.201001164
  • 215. Pivovar, B. S. (2006). An overview of electro-osmosis in fuel cell polymer electrolytes. Polymer, 47, 4194-4202. https://doi.org/10.1016/j.polymer.2006.02.071
  • 216. Kreuer, K. D. (2000). On the complexity of proton conduction phenomena. Solid State Ionics, 136-137, 149-160. https://doi.org/10.1016/S0167-2738(00)00301-5
  • 217. Elliott, J. A., & Paddison, S. J. (2007). Modelling of morphology and proton transport in PFSA membranes. Physical Chemistry Chemical Physics, 9(21), 2602-2618. https://doi.org/10.1039/B701234A
  • 218. Li, W. H., Deng, W. H., Wang, G. E., & Xu, G. (2020). Conductive MOFs, EnergyChem, 2(2), 100029. https://doi.org/10.1016/j.enchem.2020.100029
  • 219. Zuo, Z., Fu, Y., & Manthiram, A. (2012). Novel blend membranes based on acid-base interactions for fuel cells. Polymers, 4, 1627-1644. https://doi.org/10.3390/polym4041627
There are 219 citations in total.

Details

Primary Language English
Subjects Hybrid and Electric Vehicles and Powertrains, Automotive Engineering Materials
Journal Section Review Article
Authors

Turan Alp Arslan 0000-0003-3259-4854

Hüseyin Bayrakçeken

Project Number 24.FEN.BIL.12
Publication Date November 27, 2025
Submission Date September 26, 2025
Acceptance Date November 21, 2025
Published in Issue Year 2025 Volume: 5 Issue: 4

Cite

APA Arslan, T. A., & Bayrakçeken, H. (n.d.). A Comprehensive Review on Fuel Cells: From Fundamental Principles to PEM Fuel Cell Membranes. Engineering Perspective, 5(4), 194-222. https://doi.org/10.64808/engineeringperspective.1791743