Research Article
BibTex RIS Cite

İmpedimetrik Koku Biyosensörü ile Yapay Zekâ Destekli Mantar Enfeksiyonu Tespiti

Year 2025, Volume: 1 Issue: 1, 1 - 12, 31.01.2025

Abstract

Mantar enfeksiyonları oldukça yaygın olmakla birlikte, hızlı ve doğru bir tedavi yöntemi uygulanmazsa çok tehlikeli sonuçlara ve hatta ölüme bile yol açabilmektedir. Mantar enfeksiyonunu teşhis etmek için günümüzde kullanılan, yaklaşık bir ila üç gün sürebilen kültürleme gibi eski moda teşhis çözümleri hızlı ve etkili tedavi imkanını kısıtlamaktadır. Çalışmamızda hızlı, uygun maliyetli ve doğru bir şekilde mantar suşlarının tespit ve sınıflandırılmasını içeren yeni bir yöntem sunulmaktadır. Koku reseptörlerinin, koku molekülleri ile bağlanmasını taklit eden jelatin bazlı bir hidrojel kaplamanın iletken bir bakır tele uygulanmasıyla, koku tespiti için impedimetrik bir algılama konsepti oluşturulmuştur. Hidrojel elektrolit, yapısal kararlılığı için gliserol ve daha iyi iletkenliği için grafit tozu eklenerek daha da geliştirilmiştir. Sensör fabrikasyonu ise modifiye edilmiş hidrojelin, bakırdan yapılmış tellere uygulanması ile yapılmıştır. Sensör yapısı kontrollü bir ortama yerleştirilen Candida albicans, Candida glabrata ve Candida tropicalis kültür testlerinden gelen koku moleküllerine maruz bırakılmıştır. Hidrojel yapısında meydana gelen empedans değişikliklerinin Random Forest makine öğrenme algoritmasıyla sınıflandırılmasıyla %94 sınıflandırma başarısı ile enfeksiyonlar tespite dildi. Bu yeni koku biyosensörü, yerinde teşhis çağında bir devrime yol açabilecek potansiyele sahiptir. Mantar enfeksiyonlarının hızlı, basit ve hassas şekilde tespiti ve sınıflandırılması ile gereksiz tedavi maliyetleri düşürülecek ve sağlık riskleri azaltılacaktır.

References

  • [1]Benedict, K.,Richardson, M., Vallabhaneni, S., Jackson, B. R., & Chiller, T. (2017). Emerging issues, challenges, and changing epidemiology of fungal disease outbreaks. The Lancet Infectious Diseases, 17(12), e403-e411. doi: 10.1016/S1473-3099(17)30443-7
  • [2]Billesbølle, C. B., de March, C. A., van der Velden, W. J. C., Ma, N., Tewari, J., del Torrent, C. L., . . . Manglik, A. (2023). Structural basis of odorant recognition by a human odorant receptor. Nature, 615(7953), 742-749. doi: 10.1038/s41586-023-05798-y
  • [3]Borowik, P., Adamowicz, L., Tarakowski, R., Wacławik, P., Oszako, T., Ślusarski, S., & Tkaczyk, M. (2021). Development of a low-cost electronic nose for detection of pathogenic fungi and applying it to Fusarium oxysporum and Rhizoctonia solani. Sensors, 21(17), 5868.
  • [4]Breiman, L. (2001). Random forests. Machine learning, 45, 5-32.[5]Bretagne, S. (2010). Advances and prospects for molecular diagnostics of fungal infections. Current infectious disease reports, 12(6), 430-436.
  • 6]Brown, G. D., Denning, D. W., Gow, N. A., Levitz, S. M., Netea, M. G., & White, T. C. (2012). Hidden killers: human fungal infections. Sci Transl Med, 4(165), 165rv113. doi: 10.1126/scitranslmed.3004404
  • [7]Fang, W., Wu, J., Cheng, M., Zhu, X., Du, M., Chen, C., . . . Pan, W. (2023). Diagnosis of invasivefungal infections: challenges and recent developments. Journal of Biomedical Science, 30(1), 42.
  • [8]Garber, G. (2001). An overview of fungal infections. Drugs, 61 Suppl 1, 1-12. doi: 10.2165/00003495-200161001-00001
  • [9]Gupta, A. K., Chakroborty, S., Ghosh, S. K., & Ganguly, S. (2023). A machine learning model for multi-class classification of quenched and partitioned steel microstructure type by the k-nearest neighbor algorithm. Computational Materials Science, 228, 112321.
  • [10]Gupta, A. K., Versteeg, S. G., & Shear, N. H. (2017). Onychomycosis in the 21st Century: An Update on Diagnosis, Epidemiology, and Treatment. J Cutan Med Surg, 21(6), 525-539. doi: 10.1177/1203475417716362.
  • [11]Haghbin, N., Bakhshipour, A., Mousanejad, S., & Zareiforoush, H. (2023). Monitoring Botrytis cinerea infection in kiwifruit using electronic nose and machine learning techniques. Food and Bioprocess Technology, 16(4), 749-767.
  • [12]Hermanto, S., Sumarlin, L., & Fatimah, W. (2013). Differentiation of Bovine and Porcine Gelatin Based on Spectroscopic and Electrophoretic Analysis. Journal of Food and Pharmacetical Science 1 (2013) 68-73, 1, 68-73.
  • [13]Josso, P., Hall, A., Williams, C., Le Bas, T., Lusty, P., & Murton, B. (2023). Application of random-forest machine learning algorithm formineral predictive mapping of Fe-Mn crusts in the World Ocean. Ore Geology Reviews, 105671.
  • [14]Lass-Flörl, C. (2017). Current challenges in the diagnosis of fungal infections. Human Fungal Pathogen Identification: Methods and Protocols, 3-15.
  • [15]Liu, D., Zhong,S., Lin, L., Zhao, M., Fu, X., & Liu, X. (2024). Feature-level SMOTE: Augmenting fault samples in learnable feature space for imbalanced fault diagnosis of gas turbines. Expert Systems with Applications, 238, 122023.
  • [16]Makarichian, A.,Chayjan, R. A., Ahmadi, E., & Zafari, D. (2022). Early detection and classification of fungal infection in garlic (A. sativum) using electronic nose. Computers and Electronics in Agriculture, 192, 106575.
  • [17]McCarthy, M. W., & Walsh, T. J. (2016). PCR methodology and applications for the detection of human fungal pathogens. Expert Review of Molecular Diagnostics, 16(9), 1025-1036.
  • [18]Mendonca, A., Santos, H., Franco-Duarte, R., & Sampaio, P. (2022). Fungal infections diagnosis-past, present and future. Research in Microbiology, 173(3), 103915.
  • [19]More, A. S., & Rana, D. P. (2022). Performance enrichment through parameter tuning of random forest classification for imbalanced data applications. Materials Today: Proceedings, 56, 3585-3593.
  • [20]Mota, I., Teixeira-Santos, R., & Rufo, J. C. (2021). Detection and identification of fungal species by electronic nose technology: A systematic review. Fungal Biology Reviews, 37, 59-70.
  • [21]Pappas, P. G., Kauffman, C. A., Andes, D. R., Clancy, C. J., Marr, K. A., Ostrosky-Zeichner, L., .. . Walsh, T. J. (2016).Clinical practice guideline for the management of candidiasis: 2016 update by the Infectious Diseases Society of America. Clinical Infectious Diseases, 62(4), e1-e50.
  • [22]Paudel, N., & Bhatta, J. (2022). Mushroom Classification using Random Forest and REP Tree Classifiers. Nepal Journal of Mathematical Sciences, 3(1), 111-116. Perfect, J. R. (2017). The antifungal pipeline: a reality check. Nature reviews Drug discovery, 16(9), 603-616.
  • [23]inky, N. J., Islam, S., & Alice, R. S. (2019). Edibility detection of mushroom using ensemble methods. International Journal of Image, Graphics and Signal Processing, 11, 55-62.
  • [24]Tan, J. Y., Zhang, Z., Izzah, H. J., Fong, Y. K., Lee, D., Mutwil, M., & Hong, Y. (2023). Volatile-Based Diagnosis for Pathogenic Wood-Rot Fungus Fulvifomes siamensis by Electronic Nose (E-Nose) and Solid-Phase Microextraction/Gas Chromatography/Mass Spectrometry. Sensors, 23(9), 4538.
  • [25]Terrero-Salcedo, D., & Powers-Fletcher, M. V. (2020). Updates in laboratory diagnostics for invasive fungal infections. Journal of Clinical Microbiology, 58(6), 10.1128/jcm. 01487-01419.
  • [26]Viejo, C. G., Fuentes, S., Godbole, A., Widdicombe, B., & Unnithan, R. R. (2020). Development of a low-cost e-nose to assess aroma profiles: An artificial intelligence application to assess beer quality. Sensors and Actuators B: Chemical, 308, 127688.
  • [27]White, P. L. (2023). Developments in fungal serology. Current Fungal Infection Reports, 1-12.
  • [28]Wilson, A. D. (2023). Developments of Recent Applications for Early Diagnosis of Diseases Using Electronic-Nose and Other VOC-Detection Devices (Vol. 23, pp. 7885): MDPI.
  • [29]Ye, Z., Liu, Y., & Li, Q. (2021). Recent progress in smart electronic nose technologies enabled with machine learning methods. Sensors, 21(22), 7620.
  • [30]Ying Li, Xiangyang Wei, Yumeng Zhou, Jing Wang & Rui You, Research progress of electronic nose technology in exhaled breath disease analysis, Review Article, Microsystems & Nanoengineering (2023) 9:12.
  • [31]SenPeng Chen , Jia Wu , XiYuan Liu, EMORL: Effective multi-objective reinforcement learning method for hyperparameter optimization, Engineering Applications of Artificial Intelligence Volume 104, September 2021, 104315
  • [32]Binghui Si a , Zhenyu Ni a , Jiacheng Xu a , Yanxia Li b , Feng Liu a, Interactive effects of hyperparameter optimization techniques and data characteristics on the performance of machine learning algorithms for building energy metamodeling, Case Studies in Thermal Engineering Volume 55, March 2024, 104124
  • [33]L. Beuzelin a , A. Desgranges a , Q. Émile a , J.-M. Prot a , G. Farges b. ; Accompagnement à la certification ISO 13485 : 2016, IRBM News Volume 39, Issue 2, April 2018, Pages 57-61
  • [34]Mohammad , Portable biosensing devices for point-of-care diagnostics: Recent developments and applications, TrAC Trends in Analytical Chemistry Volume 91, June 2017, Pages 26-41

AI-Assisted Fungal Infection Detection Using Impedimetric Odour Biosensors

Year 2025, Volume: 1 Issue: 1, 1 - 12, 31.01.2025

Abstract

Yeast infections have been widely recognized and if no quick and accurate treatment method is applied, they can be very dangerous and might even turn into death. In comparison with old-fashioned diagnostic solutions such as culturing, which takes around one to three days to reveal yeast infections, rapid and effective treatment is often not initiated. In the current study a novel method is offered involving the extraction of yeast fungal strain identification in a rapid, cost-effective, and accurate way. Through the application of agelatin-based hydrogel coating that represents the way in which odor receptors attach to cells a sensing concept for impedimetric odor was constructed. The hydrogel was further improved by adding glycerol for its structural stability and graphite powder for its better conductivity. The process of making a sensor involved applying the modified hydrogel to wires made of copper. The sensor was then exposed to the odor molecules from culture tests of Candida albicans, Candida glabrata, and Candida tropicalis, which were placed in a controlled environment. Changes in impedance took place, and these measurements were analyzed using a Random Forest machine learning algorithm that helped to get 94% classification success. This new testing process may lead to a revolution in the era of clinical diagnostics. It will enable speediness, simplicity, as well as precision in the detection of yeast fungal infections, which, in turn, will decrease health risks leading to unnecessary treatment costs by approved drug companies.

References

  • [1]Benedict, K.,Richardson, M., Vallabhaneni, S., Jackson, B. R., & Chiller, T. (2017). Emerging issues, challenges, and changing epidemiology of fungal disease outbreaks. The Lancet Infectious Diseases, 17(12), e403-e411. doi: 10.1016/S1473-3099(17)30443-7
  • [2]Billesbølle, C. B., de March, C. A., van der Velden, W. J. C., Ma, N., Tewari, J., del Torrent, C. L., . . . Manglik, A. (2023). Structural basis of odorant recognition by a human odorant receptor. Nature, 615(7953), 742-749. doi: 10.1038/s41586-023-05798-y
  • [3]Borowik, P., Adamowicz, L., Tarakowski, R., Wacławik, P., Oszako, T., Ślusarski, S., & Tkaczyk, M. (2021). Development of a low-cost electronic nose for detection of pathogenic fungi and applying it to Fusarium oxysporum and Rhizoctonia solani. Sensors, 21(17), 5868.
  • [4]Breiman, L. (2001). Random forests. Machine learning, 45, 5-32.[5]Bretagne, S. (2010). Advances and prospects for molecular diagnostics of fungal infections. Current infectious disease reports, 12(6), 430-436.
  • 6]Brown, G. D., Denning, D. W., Gow, N. A., Levitz, S. M., Netea, M. G., & White, T. C. (2012). Hidden killers: human fungal infections. Sci Transl Med, 4(165), 165rv113. doi: 10.1126/scitranslmed.3004404
  • [7]Fang, W., Wu, J., Cheng, M., Zhu, X., Du, M., Chen, C., . . . Pan, W. (2023). Diagnosis of invasivefungal infections: challenges and recent developments. Journal of Biomedical Science, 30(1), 42.
  • [8]Garber, G. (2001). An overview of fungal infections. Drugs, 61 Suppl 1, 1-12. doi: 10.2165/00003495-200161001-00001
  • [9]Gupta, A. K., Chakroborty, S., Ghosh, S. K., & Ganguly, S. (2023). A machine learning model for multi-class classification of quenched and partitioned steel microstructure type by the k-nearest neighbor algorithm. Computational Materials Science, 228, 112321.
  • [10]Gupta, A. K., Versteeg, S. G., & Shear, N. H. (2017). Onychomycosis in the 21st Century: An Update on Diagnosis, Epidemiology, and Treatment. J Cutan Med Surg, 21(6), 525-539. doi: 10.1177/1203475417716362.
  • [11]Haghbin, N., Bakhshipour, A., Mousanejad, S., & Zareiforoush, H. (2023). Monitoring Botrytis cinerea infection in kiwifruit using electronic nose and machine learning techniques. Food and Bioprocess Technology, 16(4), 749-767.
  • [12]Hermanto, S., Sumarlin, L., & Fatimah, W. (2013). Differentiation of Bovine and Porcine Gelatin Based on Spectroscopic and Electrophoretic Analysis. Journal of Food and Pharmacetical Science 1 (2013) 68-73, 1, 68-73.
  • [13]Josso, P., Hall, A., Williams, C., Le Bas, T., Lusty, P., & Murton, B. (2023). Application of random-forest machine learning algorithm formineral predictive mapping of Fe-Mn crusts in the World Ocean. Ore Geology Reviews, 105671.
  • [14]Lass-Flörl, C. (2017). Current challenges in the diagnosis of fungal infections. Human Fungal Pathogen Identification: Methods and Protocols, 3-15.
  • [15]Liu, D., Zhong,S., Lin, L., Zhao, M., Fu, X., & Liu, X. (2024). Feature-level SMOTE: Augmenting fault samples in learnable feature space for imbalanced fault diagnosis of gas turbines. Expert Systems with Applications, 238, 122023.
  • [16]Makarichian, A.,Chayjan, R. A., Ahmadi, E., & Zafari, D. (2022). Early detection and classification of fungal infection in garlic (A. sativum) using electronic nose. Computers and Electronics in Agriculture, 192, 106575.
  • [17]McCarthy, M. W., & Walsh, T. J. (2016). PCR methodology and applications for the detection of human fungal pathogens. Expert Review of Molecular Diagnostics, 16(9), 1025-1036.
  • [18]Mendonca, A., Santos, H., Franco-Duarte, R., & Sampaio, P. (2022). Fungal infections diagnosis-past, present and future. Research in Microbiology, 173(3), 103915.
  • [19]More, A. S., & Rana, D. P. (2022). Performance enrichment through parameter tuning of random forest classification for imbalanced data applications. Materials Today: Proceedings, 56, 3585-3593.
  • [20]Mota, I., Teixeira-Santos, R., & Rufo, J. C. (2021). Detection and identification of fungal species by electronic nose technology: A systematic review. Fungal Biology Reviews, 37, 59-70.
  • [21]Pappas, P. G., Kauffman, C. A., Andes, D. R., Clancy, C. J., Marr, K. A., Ostrosky-Zeichner, L., .. . Walsh, T. J. (2016).Clinical practice guideline for the management of candidiasis: 2016 update by the Infectious Diseases Society of America. Clinical Infectious Diseases, 62(4), e1-e50.
  • [22]Paudel, N., & Bhatta, J. (2022). Mushroom Classification using Random Forest and REP Tree Classifiers. Nepal Journal of Mathematical Sciences, 3(1), 111-116. Perfect, J. R. (2017). The antifungal pipeline: a reality check. Nature reviews Drug discovery, 16(9), 603-616.
  • [23]inky, N. J., Islam, S., & Alice, R. S. (2019). Edibility detection of mushroom using ensemble methods. International Journal of Image, Graphics and Signal Processing, 11, 55-62.
  • [24]Tan, J. Y., Zhang, Z., Izzah, H. J., Fong, Y. K., Lee, D., Mutwil, M., & Hong, Y. (2023). Volatile-Based Diagnosis for Pathogenic Wood-Rot Fungus Fulvifomes siamensis by Electronic Nose (E-Nose) and Solid-Phase Microextraction/Gas Chromatography/Mass Spectrometry. Sensors, 23(9), 4538.
  • [25]Terrero-Salcedo, D., & Powers-Fletcher, M. V. (2020). Updates in laboratory diagnostics for invasive fungal infections. Journal of Clinical Microbiology, 58(6), 10.1128/jcm. 01487-01419.
  • [26]Viejo, C. G., Fuentes, S., Godbole, A., Widdicombe, B., & Unnithan, R. R. (2020). Development of a low-cost e-nose to assess aroma profiles: An artificial intelligence application to assess beer quality. Sensors and Actuators B: Chemical, 308, 127688.
  • [27]White, P. L. (2023). Developments in fungal serology. Current Fungal Infection Reports, 1-12.
  • [28]Wilson, A. D. (2023). Developments of Recent Applications for Early Diagnosis of Diseases Using Electronic-Nose and Other VOC-Detection Devices (Vol. 23, pp. 7885): MDPI.
  • [29]Ye, Z., Liu, Y., & Li, Q. (2021). Recent progress in smart electronic nose technologies enabled with machine learning methods. Sensors, 21(22), 7620.
  • [30]Ying Li, Xiangyang Wei, Yumeng Zhou, Jing Wang & Rui You, Research progress of electronic nose technology in exhaled breath disease analysis, Review Article, Microsystems & Nanoengineering (2023) 9:12.
  • [31]SenPeng Chen , Jia Wu , XiYuan Liu, EMORL: Effective multi-objective reinforcement learning method for hyperparameter optimization, Engineering Applications of Artificial Intelligence Volume 104, September 2021, 104315
  • [32]Binghui Si a , Zhenyu Ni a , Jiacheng Xu a , Yanxia Li b , Feng Liu a, Interactive effects of hyperparameter optimization techniques and data characteristics on the performance of machine learning algorithms for building energy metamodeling, Case Studies in Thermal Engineering Volume 55, March 2024, 104124
  • [33]L. Beuzelin a , A. Desgranges a , Q. Émile a , J.-M. Prot a , G. Farges b. ; Accompagnement à la certification ISO 13485 : 2016, IRBM News Volume 39, Issue 2, April 2018, Pages 57-61
  • [34]Mohammad , Portable biosensing devices for point-of-care diagnostics: Recent developments and applications, TrAC Trends in Analytical Chemistry Volume 91, June 2017, Pages 26-41
There are 33 citations in total.

Details

Primary Language English
Subjects Biomedical Diagnosis
Journal Section Biomedical Engineering
Authors

Efe Kayra Soylu This is me

Soukaina Safi This is me

Mustafa Altay Atalay

Murat Peker

Publication Date January 31, 2025
Submission Date December 11, 2024
Acceptance Date January 2, 2025
Published in Issue Year 2025 Volume: 1 Issue: 1

Cite

APA Soylu, E. K., Safi, S., Atalay, M. A., Peker, M. (2025). AI-Assisted Fungal Infection Detection Using Impedimetric Odour Biosensors. Enginoscope, 1(1), 1-12.