Year 2015, Volume 5 , Issue 1, Pages 47 - 55 2015-03-28

Resistance genes to root-knot nematodes in tomato
Domateste kök-ur nematodlarına dayanıklılık genleri

Zübeyir Devran [1] , Tevfik Özalp [2]


Root-knot nematodes (Meloidogyne spp.) are the most important pests of tomato. They cause galls on the roots of susceptible tomato plants. These galls prevent adequate water and nutrient uptake resulting in stunted growth, leaf yellowing, wilting and death during heavy infection. It is required that controlling of them for successful tomato growing. One of the best management tools in controlling root-knot nematodes is using resistant varieties. Mi-1 gene in tomato has been successfully used against Meloidogyne species including M. incognita, M. javanica and M. arenaria for a long time. Besides Mi-1 gene, different genes which confer resistance to Meloidogyne spp. in tomato have been reported. The review has proposed to present information about resistance genes to root-knot nematodes in tomato.
Kök-ur nematodları (Meloidogyne spp.), domatesin en önemli zararlı gruplarındandır. Bu nematodlar, duyarlı domates bitkisinin köklerinde ur oluştururlar. Urlar, bitkinin topraktan su ve besin alımını engellediği için bitkinin sararmasına, solmasına ve yoğun enfeksiyonda ölmesine neden olurlar. Başarılı bir domates yetiştiriciliği için bu nematodlar ile mücadele yapılması gerekmektedir. Nematodların kontrolünde en önemli mücadele yöntemlerinden birisi dayanıklı çeşitlerin kullanılmasıdır. Domateste bulunan Mi-1 geni, uzun yıllardan beri, Meloidogyne incognita, M. javanica and M. arenaria türlerine karşı mücadelede başarılı bir şekilde kullanılmaktadır. Mi-1 geninin yanı sıra Meloidogyne spp.’ye dayanıklılık sağlayan farklı genlerin bulunduğu rapor edilmiştir. Bu derlemede, domateste kök-ur nematodlarına dayanıklılık sağlayan genler hakkında bilgi verilmesi amaçlanmıştır.
  • Ammati, M., I.J. Thomason & H.E. McKiney, 1986. Retention of resistance to Meloidogyne incognita in Lycopersicon genotypes at high soil temperature. Journal of Nematology, 18: 491 –495.
  • Ammiraju, J.S., J.C. Veremis, X. Huang, P.A. Roberts & I. Kaloshian, 2003. The heat-stable root-knot nematode resistance gene Mi-9 from Lycopersicon peruvianumis localized on the short arm of chromosome 6. Theoretical and Applied Genetics, 106: 478–484.
  • Anonymous, 2015. Production of top 5 producers, 2013 data. (Web sayfası: http://faostat3.fao.org/browse/Q/QC/E), (Erişimtarihi: Şubat 2015)
  • Apel, K. & H. Hirt, 2004. Reactive oxygen species: Metabolism, oxidative stress, and signal transduction. Annual Review of Plant Biology, 55: 373-399.
  • Bailey, D.M., 1941. The seedling method for root-knot nematode resistance. Proceedings of the American Society for Horticultural Science, 38: 573-575.
  • Bhattarai K.K., Q.-G. Xie, S. Mantelin, U. Bishnoi, T. Girke, D.A. Navarre & I. Kaloshian, 2008. Tomato susceptibility to root-knot nematodes requires an intact jasmonic acid signaling pathway. Mol. Plant Microbe Interact., 21: 1205–1214.
  • Bird, D. M. & I. Kaloshian, 2003. Are roots special? Nematodes have their say. Physiological and Molecular PlantPathology, 62: 115-123.
  • Bleve-Zacheo, T., M.T. Melillo & P. Castagnone-Sereno, 2007. “The contribution of biotechnology to root-knot nematode control in tomato plants. Pest Technology”, Global Science Books, 1: 1-16.
  • Cap, G.B., P. A. Roberts & I. J. Thomason, 1993. Inheritance of heat-stable resistance to Meloidogyne incognita in Lycopersicon peruvianum and its relationship to the Mi gene. Theoretical and Applied Genetics, 85: 777-783.
  • Castagnone-Sereno, P., 1994. “Genetics of Meloidogyne virulence against resistance genes from Solanaceous crop, 261–276”. In: Advances in Molecular Plant Nematology (Ed: F. Lamberti, C. De Giorgi, D. McK. Bird). Plenum Press, NY, 312 s.
  • Castagnone-Sereno, P., 2002. Genetic variability in parthenogenetic root-knot nematodes, Meloidogyne spp., and their ability to overcome plant resistance genes. Nematology, 4: 605-608.
  • Devran, Z., & M. A. Söğüt, 2010. Occurrence of virulent root-knot nematode populations on tomatoes bearing the Mi gene in protected vegetable-growing areas of Turkey. Phytoparasitica, 38: 245–251.
  • Devran, Z., M. A. Söğüt & N. Mutlu, 2010. Response of tomato rootstocks with the Mi resistance gene to Meloidogyne incognita race 2 at different soil temperatures. Phytopathologia Mediterranea, 49: 11-17.
  • Devran, Z., B. Başköylü, A. Taner & F. Doğan, 2013. Comparison of PCR-based molecular markers for identification of Mi gene. Acta Agriculturae Scandinavica, Section B–Soil & Plant Science, 63: 395-402.
  • Devran, Z., & M. A. Söğüt, 2014. Response of heat-stable tomato genotypes to Mi-1 virulent root-knot nematode populations. Türkiye Entomoloji Dergisi, 38: 229-238.
  • Doganlar, S., A. Frary & S. D. Tanksley, 1997. Production of interspecific hybrids between Lycopersicon esculentum and two accessions of Lycopersicon peruvianum carrying new root-knot nematode resistance genes. Euphytica, 95: 203–207.
  • Dropkin, V.H., 1969a. Cellular responses of plants to nematode infections. Annual Review Phytopathology, 7: 101–122
  • Dropkin, V.H., 1969b. The necrotic reaction of tomatoes and other hosts resistant to Meloidogyne: reversal by temperature. Phytopathology, 59: 1632–1637.
  • El Mehrach, K., S. Gharsallah Chouchane, L. Mejia, V.M. Williamson, F. Vidavsky, A. Hatimi, M. S. Salus, C. T. Martin & D. P. Maxwell, 2005. PCR based methods for tagging the Mi-1 locus for resistance to root-knot nematode in begomo virus resistant tomato germplasm. Acta Hortic., 695: 263-270.
  • Flor, H.H., 1955. Host–parasite interaction in flax rust—Its genetic and other implications. Phytopathology, 45: 680–685.
  • Francia, E., G. Tacconi, C. Crosatti, D.Barabaschi, D. Bulgarelli, E. Dall’Aglio & G. Valé, 2005. Marker assisted selection in crop plants. Plant Cell Tiss Org Cult., 82: 317-342.
  • Gilbert, J.C. & D.C. McGuire, 1956. Inheritance of resistance to severe root-knot from Meloidogyne incognita in commercial type tomatoes. Proceedings of the American Society for Horticultural Sciences,68: 437–42.
  • Gill, H.K., 2014. Soil Solarization: A Natural Pest Management Strategy. Popular Kheti, 2: 153-157.
  • Goggin, F. L., L. Jia, G. Shah, S. Hebert, V. M. Williamson & D. E. Ullman, 2006. Heterologous expression of the Mi1.2 gene from tomato confers resistance against nematodes but not aphids in eggplant. Molecular PlantMicrobe Interactions, 19: 383-388.
  • González, L.C., 2009. Tomato Rootstocks for the Control of Meloidogyne spp: Charaterization and Evaluation of the Resistance Response Conferred by the Mi-1 Gene in Tomato Rootstocks. Universitat Politècnica de Catalunya, Doktora Tezi, Barcelona, 226 s.
  • Hwang, C. F. & V. M. Williamson, 2003. Leucine-rich repeat-mediated intramolecular interactions in nematode recognition and cell death signaling by the tomato resistance protein Mi. The Plant Journal, 34: 585-593.
  • Jablonska, B., J. S. Ammiraju, K. K. Bhattarai, S. Mantelin, O. Martinez de Ilarduya, P. A. Roberts & I. Kaloshian, 2007. The Mi-9 gene from Solanum arcanum conferring heat-stable resistance to root-knot nematodes is a homolog of Mi-1. Plant Physiology,143: 1044-1054.
  • Kaloshian, I., W. H. Lange & V. M. Williamson, 1995. An aphid resistance locus is tightly linked to the nematode resistance gene, Mi, in tomato. Proc. Natl. Acad. Sci. U.S.A., 92: 622-625.
  • Kaloshian I., V. M. Williamson, G. Miyao, D. Lawn & B. B. Westerdahl, 1996. Resistance-breaking’ nematodes indentified in California tomatoes. California Agriculture, 50: 9–18.
  • Kaloshian, I., 2004. Gene-for-gene disease resistance: bridging insect pest and pathogen defense. Journal of Chemical Ecology, 30: 2419-2438.
  • Kunkel, B. N., & D.M. Brooks, 2002. Cross talk between signaling pathways in pathogen defense. Curr. Opin. Plant Biol., 5: 325-331.
  • Lamovsek, J., G. Urek & S. Trdan, 2013. Biological Control of Root-Knot Nematodes (Meloidogyne spp.): Microbes against the Pests. Acta Agriculturae Slovenica, 101: 263-275.
  • Lefrancois C., Y. Chupeau & J. B. Bourgin, 1993. Sexual and somatic hybridization in the genus Lycopersicon. Theoretical Applied Genetics, 86: 533–546.
  • Li, Q., Q.-G. Xie, J. Smith-Becker, D. A. Navarre & I. Kaloshian, 2006. Mi-1-mediated aphid resistance involves salicylic acid and mitogen-activated protein kinase signaling pathways. Mol. Plant Microbe Interact., 19: 655664.
  • Lopez-Perez, J. A., M. Le Strange, I. Kaloshian & A. T. Ploeg, 2006. Differential response of Mi gene-resistant tomato rootstocks to root-knot nematodes (Meloidogyne incognita). Crop Protection, 25: 382-388.
  • Mantelin, S., K. K. Bhattarai, T. Z. Jhaveri & I. Kaloshian, 2013. Mi-1-Mediated resistance to Meloidogyne incognita in tomato may not rely on ethylene but hormone perception through ETR3 participates in limiting nematode infection in a susceptible host. Plos One, 8: 1-8.
  • Martinez de Ilarduya, O. & I. Kaloshian, 2001. Mi-1.2 transcripts accumulate ubiquitously in resistant Lycopersicon esculentum. Journal of Nematology,33: 116-120.
  • Martinez de Ilarduya, O., A. E. Moore & I. Kaloshian, 2001. The tomato Rme1 locus is required for Mi-1-mediated resistance to root-knot nematodes and the potato aphid. The Plant Journal, 27: 417-425.
  • Martinez de Ilarduya, O., G. Nombela, C .F. Hwang, V. M. Williamson, M. Muñiz & I. Kaloshian, 2004. Rme1 is necessary for Mi-1-mediated resistance and acts early in the resistance pathway. Molecular Plant-microbe Interactions, 17: 55-61.
  • Medina-Filho, H. & S. D. Tanksley, 1983. “Breeding For Nematode Resistance, 904-923” In: Handbook of Plant Cell Culture Vol. 1 (Eds. Evans D. A., W. R. Sharp, P. V. Ammirato & Y. Yamada). Macmillan New York, 970 pp.
  • Milligan, S.B., J. Bodeau, J. Yaghoobi, I. Kaloshian, P. Zabel& V. M. Williamson, 1998. The root-knot resistance gene Mifrom tomato is a member of the leucine zipper, nucleotide binding, leucine rich repeat family of plant genes. Plant Cell, 10: 1307-1319.
  • Nombela, G., V. M. Williamson & M. Muniz, 2003. The root-knot nematode resistance gene Mi.1.2 of tomato irresponsible for resistance against the whitefly Bemisia tabaci. Molecular Plant-Microbe Interactions, 16:645-649.
  • Peralta I. E., S. K. Knapp & D. M. Spooner, 2005. New species of wild tomatoes (Solanum section Lycopersicon: Solanaceae) from Northern Peru. Systematic Botany, 30: 424–434.
  • Roberts, P. A. & I. J. Thomason, 1986. Variability in reproduction of isolates of Meloidogyne incognita and M. javanicaon resistant tomato genotypes. Plant Dis., 70: 547–51.
  • Roberts, P.A., 2002. “Concepts and Consequences of Resistance, 23-41”. In: Plant Resistance to Parasitic Nematodes (Eds. Starr J.L., R. Cook & J. Bridge). CAB International, Oxon, 272 pp.
  • Rossi, M., F. L. Goggin, S. B. Milligan, I. Kaloshian, D. E. Ullman & V. M. Williamson, 1998. The nematode resistance gene Mi of tomato confers resistance against the potato aphid. Proceedings of the National Academy of Sciences, 95: 9750-9754.
  • Seah, S., A. C. Tellen & V. M. Williamson, 2007a. Intro gressed and endogenous Mi-1 gene clusters in tomato differ by complex rearrangements in flanking sequences and show sequence exchange and diversifying selection among homologs. Theoretical and Applied Genetics, 114: 1289-1302.
  • Seah, S, V. M. Williamson, B. E. Garcia, L. Mejia, M. S. Salus, C.T. Martin & D. P. Maxwell, 2007b. Evaluation of a codominant SCAR marker for detection of the Mi-1 locus for resistance to root-knot nematode in tomato germplasm. Tomato Genet. Coop. Rep., 57: 37-40.
  • Smith, P.G., 1944. Embryo culture of a tomato species hybrid. Proceedings of the American Society for Horticultural Science, 44: 413-416.
  • Ornat, C., S. Verdejo-Lucas, & F. J. Sorribas, 2001. A population of Meloidogyne javanica in Spain virulent to the Mi resistance gene in tomato. Plant Disease, 85: 271–276.
  • Tör, M., 1998. Bitkilerdeki moleküler konukçu-patojen ilişkilerdeki son gelişmeler. Turkish Journal of Biology, 22: 271 -278.
  • Tzortzakakis, E. A., D. L. Trudgill & M. S. Phillips, 1998. Evidence for a dosage effect of the Mi gene on partially virulent isolates of Meloidogyne javanica. Journal of Nematology, 30: 76–80.
  • Verdejo-Lucas, S., M. Talavera & M. F. Andrés, 2012. Virulence response to the Mi. 1 gene of Meloidogyne populations from tomato in greenhouses. Crop Protection, 39: 97-105.
  • Veremis J. C. & P. A. Roberts, 1996a. Differentiation of Meloidogyne incognita and M. arenaria novel resistance phenotypes in Lycopersicon peruvianum and derived bridge-lines. Theoretical and Applied Genetics, 93: 960967.
  • Veremis, J.C., & P.A. Roberts, 1996b. Relation ships between Meloidogyne incognita resistance genes in Lycopersicon peruvianum differentiated by heat sensitivity and nematode virulence. Theoretical and Applied Genetics, 93: 950-959.
  • Veremis, J. C., A. W. Van Heusden & P. A. Roberts, 1999. Mapping a novelheat-stable resistance to Meloidogyne in Lycopersicon peruvianum. Theoretical and Applied Genetics, 98: 274-280.
  • Williamson, V. M. & R. S. Hussey, 1996. Nematode pathogenesis and resistance in plants. Plant Cell,8: 1735–45.
  • Williamson, V. M., 1998. Root-knotnematode resistance genes in tomato and their potential for future use. Annual Review of Phytopathology, 36: 277-293.
  • Williamson, V. M., 1999. Plant nematode resistance genes. Current Opinion in Plant Biology, 2: 327-331.
  • Williamson, V. M., J. Y. Ho, F. F. Wu, N. Miller & I. Kaloshian, 1994. A PCR-bases marker tightly linked to the nematode resistance gene, Mi, in tomato. Theoretical and Applied Genetics, 87: 757-763.
  • Williamson, V. M. & C. A. Gleason, 2003. Plant-nematode interactions. Current Opinion in Plant Biology, 6: 327-333.
  • Yaghoobi, J., I. Kaloshian, Y. Wen & V. M. Williamson, 1995. Mapping a new nematode resistance locus in Lycopersicon peruvianum. Theoretical and Applied Genetics, 91: 457-464.
  • Yaghoobi, J., J. L. Yates & V. M. Williamson, 2005. Finemapping of the nematode resistance gene Mi-3 in Solanum peruvianum and construction of a S. lycopersicum DNA contigs panning the locus. Molecular Genetic Genomics, 274: 60–69.
Primary Language tr
Journal Section Review
Authors

Author: Zübeyir Devran

Author: Tevfik Özalp

Dates

Publication Date : March 28, 2015

Bibtex @ { entoteb75102, journal = {Türkiye Entomoloji Bülteni}, issn = {2146-975X}, eissn = {2536-4928}, address = {}, publisher = {Türkiye Entomoloji Derneği}, year = {2015}, volume = {5}, pages = {47 - 55}, doi = {10.16969/teb.95741}, title = {Domateste kök-ur nematodlarına dayanıklılık genleri}, key = {cite}, author = {Devran, Zübeyir and Özalp, Tevfik} }
APA Devran, Z , Özalp, T . (2015). Domateste kök-ur nematodlarına dayanıklılık genleri. Türkiye Entomoloji Bülteni , 5 (1) , 47-55 . DOI: 10.16969/teb.95741
MLA Devran, Z , Özalp, T . "Domateste kök-ur nematodlarına dayanıklılık genleri". Türkiye Entomoloji Bülteni 5 (2015 ): 47-55 <https://dergipark.org.tr/en/pub/entoteb/issue/5552/75102>
Chicago Devran, Z , Özalp, T . "Domateste kök-ur nematodlarına dayanıklılık genleri". Türkiye Entomoloji Bülteni 5 (2015 ): 47-55
RIS TY - JOUR T1 - Domateste kök-ur nematodlarına dayanıklılık genleri AU - Zübeyir Devran , Tevfik Özalp Y1 - 2015 PY - 2015 N1 - doi: 10.16969/teb.95741 DO - 10.16969/teb.95741 T2 - Türkiye Entomoloji Bülteni JF - Journal JO - JOR SP - 47 EP - 55 VL - 5 IS - 1 SN - 2146-975X-2536-4928 M3 - doi: 10.16969/teb.95741 UR - https://doi.org/10.16969/teb.95741 Y2 - 2019 ER -
EndNote %0 Türkiye Entomoloji Bülteni Domateste kök-ur nematodlarına dayanıklılık genleri %A Zübeyir Devran , Tevfik Özalp %T Domateste kök-ur nematodlarına dayanıklılık genleri %D 2015 %J Türkiye Entomoloji Bülteni %P 2146-975X-2536-4928 %V 5 %N 1 %R doi: 10.16969/teb.95741 %U 10.16969/teb.95741
ISNAD Devran, Zübeyir , Özalp, Tevfik . "Domateste kök-ur nematodlarına dayanıklılık genleri". Türkiye Entomoloji Bülteni 5 / 1 (March 2015): 47-55 . https://doi.org/10.16969/teb.95741
AMA Devran Z , Özalp T . Domateste kök-ur nematodlarına dayanıklılık genleri. Türkiye Entomoloji Bülteni. 2015; 5(1): 47-55.
Vancouver Devran Z , Özalp T . Domateste kök-ur nematodlarına dayanıklılık genleri. Türkiye Entomoloji Bülteni. 2015; 5(1): 55-47.