Research Article
BibTex RIS Cite
Year 2019, , 159 - 165, 08.08.2019
https://doi.org/10.32448/entupdates.578602

Abstract

References

  • 1. Kalendar R, Flavell A, Ellis T, Sjakste T, Moisy C, Schulman AH. Analysis of plant diversity with retrotransposon-based molecular markers. Heredity 2011;106:520-30.
  • 2. Kalendar R, Grob T, Regina M, Suoniemi A, Schulman A. IRAP and REMAP: two new retrotransposon-based DNA fingerprinting techniques. Theor Appl Genet 1999;98:704-11.
  • 3. Naclerio RM, Bachert C, Baraniuk JN. Pathophysiology of nasal congestion. Int J Gen Med 2010;3:47-57.
  • 4. Hedman J, Kaprio J, Poussa T, Nieminen MM. Prevalence of asthma, aspirin intolerance, nasal polyposis and chronic obstructive pulmonary disease in a population-based study. Int J Gen Med 1999;28:717-22.
  • 5. Dinarte VRP, Santos ARDd, Araújo LFd, et al. Polymorphisms in chronic rhinosinusitis with nasal polyps-a systematic review. Braz J Otorhinolaryngol 2017;83:705-11.
  • 6. Newton JR, Ah-See KW. A review of nasal polyposis. Ther Clin Risk Manag 2008;4:507-12.
  • 7. Scott-Brown WG. Scott-Brown’s Otolaryngology: Adult Audiology. Butterworth; 1987.
  • 8. GreisnerIII WA, Settipane GA, editors. Hereditary factor for nasal polyps. Allergy and asthma proceedings; 1996: OceanSide Publications.
  • 9. Delagrand A, Gilbert-Dussardier B, Burg S, et al. Nasal polyposis: is there an inheritance pattern? A single family study. Rhinology 2008;46:125-30.
  • 10. Wang LF, Chien CY, Tai CF, Kuo WR, Hsi E, Juo SHH. Matrix metalloproteinase-9 gene polymorphisms in nasal polyposis. BMC Med Genet 2010;11:85.
  • 11. Pescador DB, Isidoro-Garcia M, Garcia-Solaesa V, de Pedro MP, Sanz C, Hernandez-Hernandez L. Genetic association study in nasal polyposis. J Investig Allergol Clin Immunol 2012;22:331-40.
  • 12. Sitarek P, Zielinska-Blizniewska H, Dziki L, et al. Association of the−14C/G MET and the− 765G/C COX-2 Gene Polymorphisms with the Risk of Chronic Rhinosinusitis with Nasal Polyps in a Polish Population. DNA Cell Biol 2012;31:1258-66.
  • 13. Zielinska-Blizniewska H, Sitarek P, Milonski J, et al. Association of the−33C/G OSF-2 and the 140A/G LF gene polymorphisms with the risk of chronic rhinosinusitis with nasal polyps in a Polish population. Mol Biol Rep 2012;39:5449-57.
  • 14. Bush WS, Moore JH. Genome-wide association studies. PLoS Comput Biol 2012;8:e1002822.
  • 15. Hulse K, Stevens W, Tan B, Schleimer R. Pathogenesis of nasal polyposis. Clin Exp Allergy 2015;45:328-46.
  • 16. Ioannidis D, Lachanas VA, Florou Z, Bizakis JG, Petinaki E, Skoulakis CE. Herpes viruses and human papilloma virus in nasal polyposis and controls. Braz J Otorhinolaryngol 2015;81:658-62.
  • 17. Zaravinos A, Bizakis J, Spandidos DA. Prevalence of human papilloma virus and human herpes virus types 1–7 in human nasal polyposis. J Med Virol 2009;81:1613-9.
  • 18. Lander ES, Linton LM, Birren B, et al. Initial sequencing and analysis of the human genome. Nature 2001;409:860-921.
  • 19. Jern P, Sperber GO, Ahlsén G, Blomberg J. Sequence variability, gene structure, and expression of full-length human endogenous retrovirus H. J Virol 2005;79:6325-37.
  • 20. Küry P, Nath A, Créange A, et al. Human endogenous retroviruses in neurological diseases. Trends Mol Med 2018;24:379-94.
  • 21. Jern P, Coffin JM. Effects of retroviruses on host genome function. Annu Rev Genet 2008;42:709-32.
  • 22. Young GR, Stoye JP, Kassiotis G. Are human endogenous retroviruses pathogenic? An approach to testing the hypothesis. Bioessays 2013;35:794-803.
  • 23. Heneghan H, Miller N, Lowery A, Sweeney K, Kerin M. MicroRNAs as novel biomarkers for breast cancer. J Oncol 2009;2009:950201.
  • 24. Subramanian RP, Wildschutte JH, Russo C, Coffin JM. Identification, characterization, and comparative genomic distribution of the HERV-K (HML-2) group of human endogenous retroviruses. Retrovirology 2011;8:90.
  • 25. Shin W, Lee J, Son SY, Ahn K, Kim HS, Han K. Human-specific HERVK insertion causes genomic variations in the human genome. PloS one 2013;8:e60605.
  • 26. Ghatak S, Muthukumaran RB, Nachimuthu SK. A simple method of genomic DNA extraction from human samples for PCR-RFLP analysis. J Biomol Tech 2013;24:224-31.
  • 27. García-Montojo M, de la Hera B, Varadé J, et al. HERV-W polymorphism in chromosome X is associated with multiple sclerosis risk and with differential expression of MSRV. Retrovirology 2014;11:2.
  • 28. Marguerat S, Wang WY, Todd JA, Conrad B. Association of human endogenous retrovirus K-18 polymorphisms with type 1 diabetes. Diabetes 2004;53:852-4.
  • 29. Shiroma T, Sugimoto J, Oda T, Jinno Y, Kanaya F. Search for active endogenous retroviruses: identification and characterization of a HERVE gene that is expressed in the pancreas and thyroid. J Hum Genet 2001;46:619-25.
  • 30. Seifarth W, Frank O, Zeilfelder U, et al. Comprehensive analysis of human endogenous retrovirus transcriptional activity in human tissues with a retrovirus-specific microarray. J Virol 2005;79:341-52.
  • 31. Krzysztalowska-Wawrzyniak M, Ostanek M, Clark J, et al. The distribution of human endogenous retrovirus K-113 in health and autoimmune diseases in Poland. Rheumatology 2011;50:1310-4.
  • 32. Brodziak A, Ziółko E, Muc-Wierzgoń M, Nowakowska-Zajdel E, Kokot T, Klakla K. The role of human endogenous retroviruses in the pathogenesis of autoimmune diseases. Med Sci Monit 2012;18:80-8.
  • 33. Dormoy A, Hanau D, Tongio M, Cazenave J. Development and validation of a genotyping kit for the eight principal human platelet alloantigen systems. Transfus Clin Biol 2000;7:51-62.

Inter-retrotransposon polymorphism polymerase chain reaction as a tool for screening HERV polymorphisms in nasal mucosal swabs

Year 2019, , 159 - 165, 08.08.2019
https://doi.org/10.32448/entupdates.578602

Abstract

Objective: Inter-retrotransposon polymorphism Polymerase Chain Reaction (IRAP-PCR) technique allows for detecting insertional polymorphisms via amplification of the DNA fragment between two retrotransposons in plant genomes. However, this method has not been reported to be used for analyzing human samples to date. Recently, Human Endogenous Retrovirus (HERV) polymorphisms gained interest due to their potential effect on pathophysiology of certain diseases. Nevertheless, the association between HERV polymorphisms and the risk for developing nasal polyposis (NP) has not been studied. In this study, we aimed to investigate whether or not IRAP-PCR could be performed in nasal swab samples for comparing HERV polymorphisms in different nasal mucosal samples.

Methods: Nasal swab samples from 16 patients were used for DNA isolation. These DNA samples were used as templates for IRAP PCR of HERV-K6, HERV-K11, HERV-L1 and HERV-L2 and PCR products were analyzed by agarose gel electrophoresis.

Results: Nasal swab samples yielded enough DNA material for successfully performing IRAP-PCR. We obtained specific banding patterns the three out of four HERV sequences tested in this study. No polymorphisms was detected between samples from different patients. Similarly, polymorphic bands was not detected between the polyps or nasal mucosal swab samples obtained from the same patient.

Conclusion: We have, for the first time, shown that IRAPPCR can be performed in nasal swabs. Our findings suggest that this technique can serve as an inexpensive and effective screening tool for investigating links between nasal mucosal diseases and HERV polymorphisms such as nasal polyposis.

References

  • 1. Kalendar R, Flavell A, Ellis T, Sjakste T, Moisy C, Schulman AH. Analysis of plant diversity with retrotransposon-based molecular markers. Heredity 2011;106:520-30.
  • 2. Kalendar R, Grob T, Regina M, Suoniemi A, Schulman A. IRAP and REMAP: two new retrotransposon-based DNA fingerprinting techniques. Theor Appl Genet 1999;98:704-11.
  • 3. Naclerio RM, Bachert C, Baraniuk JN. Pathophysiology of nasal congestion. Int J Gen Med 2010;3:47-57.
  • 4. Hedman J, Kaprio J, Poussa T, Nieminen MM. Prevalence of asthma, aspirin intolerance, nasal polyposis and chronic obstructive pulmonary disease in a population-based study. Int J Gen Med 1999;28:717-22.
  • 5. Dinarte VRP, Santos ARDd, Araújo LFd, et al. Polymorphisms in chronic rhinosinusitis with nasal polyps-a systematic review. Braz J Otorhinolaryngol 2017;83:705-11.
  • 6. Newton JR, Ah-See KW. A review of nasal polyposis. Ther Clin Risk Manag 2008;4:507-12.
  • 7. Scott-Brown WG. Scott-Brown’s Otolaryngology: Adult Audiology. Butterworth; 1987.
  • 8. GreisnerIII WA, Settipane GA, editors. Hereditary factor for nasal polyps. Allergy and asthma proceedings; 1996: OceanSide Publications.
  • 9. Delagrand A, Gilbert-Dussardier B, Burg S, et al. Nasal polyposis: is there an inheritance pattern? A single family study. Rhinology 2008;46:125-30.
  • 10. Wang LF, Chien CY, Tai CF, Kuo WR, Hsi E, Juo SHH. Matrix metalloproteinase-9 gene polymorphisms in nasal polyposis. BMC Med Genet 2010;11:85.
  • 11. Pescador DB, Isidoro-Garcia M, Garcia-Solaesa V, de Pedro MP, Sanz C, Hernandez-Hernandez L. Genetic association study in nasal polyposis. J Investig Allergol Clin Immunol 2012;22:331-40.
  • 12. Sitarek P, Zielinska-Blizniewska H, Dziki L, et al. Association of the−14C/G MET and the− 765G/C COX-2 Gene Polymorphisms with the Risk of Chronic Rhinosinusitis with Nasal Polyps in a Polish Population. DNA Cell Biol 2012;31:1258-66.
  • 13. Zielinska-Blizniewska H, Sitarek P, Milonski J, et al. Association of the−33C/G OSF-2 and the 140A/G LF gene polymorphisms with the risk of chronic rhinosinusitis with nasal polyps in a Polish population. Mol Biol Rep 2012;39:5449-57.
  • 14. Bush WS, Moore JH. Genome-wide association studies. PLoS Comput Biol 2012;8:e1002822.
  • 15. Hulse K, Stevens W, Tan B, Schleimer R. Pathogenesis of nasal polyposis. Clin Exp Allergy 2015;45:328-46.
  • 16. Ioannidis D, Lachanas VA, Florou Z, Bizakis JG, Petinaki E, Skoulakis CE. Herpes viruses and human papilloma virus in nasal polyposis and controls. Braz J Otorhinolaryngol 2015;81:658-62.
  • 17. Zaravinos A, Bizakis J, Spandidos DA. Prevalence of human papilloma virus and human herpes virus types 1–7 in human nasal polyposis. J Med Virol 2009;81:1613-9.
  • 18. Lander ES, Linton LM, Birren B, et al. Initial sequencing and analysis of the human genome. Nature 2001;409:860-921.
  • 19. Jern P, Sperber GO, Ahlsén G, Blomberg J. Sequence variability, gene structure, and expression of full-length human endogenous retrovirus H. J Virol 2005;79:6325-37.
  • 20. Küry P, Nath A, Créange A, et al. Human endogenous retroviruses in neurological diseases. Trends Mol Med 2018;24:379-94.
  • 21. Jern P, Coffin JM. Effects of retroviruses on host genome function. Annu Rev Genet 2008;42:709-32.
  • 22. Young GR, Stoye JP, Kassiotis G. Are human endogenous retroviruses pathogenic? An approach to testing the hypothesis. Bioessays 2013;35:794-803.
  • 23. Heneghan H, Miller N, Lowery A, Sweeney K, Kerin M. MicroRNAs as novel biomarkers for breast cancer. J Oncol 2009;2009:950201.
  • 24. Subramanian RP, Wildschutte JH, Russo C, Coffin JM. Identification, characterization, and comparative genomic distribution of the HERV-K (HML-2) group of human endogenous retroviruses. Retrovirology 2011;8:90.
  • 25. Shin W, Lee J, Son SY, Ahn K, Kim HS, Han K. Human-specific HERVK insertion causes genomic variations in the human genome. PloS one 2013;8:e60605.
  • 26. Ghatak S, Muthukumaran RB, Nachimuthu SK. A simple method of genomic DNA extraction from human samples for PCR-RFLP analysis. J Biomol Tech 2013;24:224-31.
  • 27. García-Montojo M, de la Hera B, Varadé J, et al. HERV-W polymorphism in chromosome X is associated with multiple sclerosis risk and with differential expression of MSRV. Retrovirology 2014;11:2.
  • 28. Marguerat S, Wang WY, Todd JA, Conrad B. Association of human endogenous retrovirus K-18 polymorphisms with type 1 diabetes. Diabetes 2004;53:852-4.
  • 29. Shiroma T, Sugimoto J, Oda T, Jinno Y, Kanaya F. Search for active endogenous retroviruses: identification and characterization of a HERVE gene that is expressed in the pancreas and thyroid. J Hum Genet 2001;46:619-25.
  • 30. Seifarth W, Frank O, Zeilfelder U, et al. Comprehensive analysis of human endogenous retrovirus transcriptional activity in human tissues with a retrovirus-specific microarray. J Virol 2005;79:341-52.
  • 31. Krzysztalowska-Wawrzyniak M, Ostanek M, Clark J, et al. The distribution of human endogenous retrovirus K-113 in health and autoimmune diseases in Poland. Rheumatology 2011;50:1310-4.
  • 32. Brodziak A, Ziółko E, Muc-Wierzgoń M, Nowakowska-Zajdel E, Kokot T, Klakla K. The role of human endogenous retroviruses in the pathogenesis of autoimmune diseases. Med Sci Monit 2012;18:80-8.
  • 33. Dormoy A, Hanau D, Tongio M, Cazenave J. Development and validation of a genotyping kit for the eight principal human platelet alloantigen systems. Transfus Clin Biol 2000;7:51-62.
There are 33 citations in total.

Details

Primary Language English
Subjects Health Care Administration
Journal Section Articles
Authors

Ahmet Hamdi Kepekçi 0000-0002-5332-5234

Merve Seda İbişoğlu This is me 0000-0001-9237-4357

Sibel Yılmaz 0000-0002-9930-3567

Cenk Kığ 0000-0002-0450-5175

Publication Date August 8, 2019
Submission Date June 17, 2019
Acceptance Date July 24, 2019
Published in Issue Year 2019

Cite

APA Kepekçi, A. H., İbişoğlu, M. S., Yılmaz, S., Kığ, C. (2019). Inter-retrotransposon polymorphism polymerase chain reaction as a tool for screening HERV polymorphisms in nasal mucosal swabs. ENT Updates, 9(2), 159-165. https://doi.org/10.32448/entupdates.578602
AMA Kepekçi AH, İbişoğlu MS, Yılmaz S, Kığ C. Inter-retrotransposon polymorphism polymerase chain reaction as a tool for screening HERV polymorphisms in nasal mucosal swabs. ENT Updates. August 2019;9(2):159-165. doi:10.32448/entupdates.578602
Chicago Kepekçi, Ahmet Hamdi, Merve Seda İbişoğlu, Sibel Yılmaz, and Cenk Kığ. “Inter-Retrotransposon Polymorphism Polymerase Chain Reaction As a Tool for Screening HERV Polymorphisms in Nasal Mucosal Swabs”. ENT Updates 9, no. 2 (August 2019): 159-65. https://doi.org/10.32448/entupdates.578602.
EndNote Kepekçi AH, İbişoğlu MS, Yılmaz S, Kığ C (August 1, 2019) Inter-retrotransposon polymorphism polymerase chain reaction as a tool for screening HERV polymorphisms in nasal mucosal swabs. ENT Updates 9 2 159–165.
IEEE A. H. Kepekçi, M. S. İbişoğlu, S. Yılmaz, and C. Kığ, “Inter-retrotransposon polymorphism polymerase chain reaction as a tool for screening HERV polymorphisms in nasal mucosal swabs”, ENT Updates, vol. 9, no. 2, pp. 159–165, 2019, doi: 10.32448/entupdates.578602.
ISNAD Kepekçi, Ahmet Hamdi et al. “Inter-Retrotransposon Polymorphism Polymerase Chain Reaction As a Tool for Screening HERV Polymorphisms in Nasal Mucosal Swabs”. ENT Updates 9/2 (August 2019), 159-165. https://doi.org/10.32448/entupdates.578602.
JAMA Kepekçi AH, İbişoğlu MS, Yılmaz S, Kığ C. Inter-retrotransposon polymorphism polymerase chain reaction as a tool for screening HERV polymorphisms in nasal mucosal swabs. ENT Updates. 2019;9:159–165.
MLA Kepekçi, Ahmet Hamdi et al. “Inter-Retrotransposon Polymorphism Polymerase Chain Reaction As a Tool for Screening HERV Polymorphisms in Nasal Mucosal Swabs”. ENT Updates, vol. 9, no. 2, 2019, pp. 159-65, doi:10.32448/entupdates.578602.
Vancouver Kepekçi AH, İbişoğlu MS, Yılmaz S, Kığ C. Inter-retrotransposon polymorphism polymerase chain reaction as a tool for screening HERV polymorphisms in nasal mucosal swabs. ENT Updates. 2019;9(2):159-65.