Review
BibTex RIS Cite
Year 2020, Volume: 10 Issue: 2, 361 - 371, 25.08.2020
https://doi.org/10.32448/entupdates.780604

Abstract

References

  • 1. Poon H, Li C, Gao W, Ren H, Lim CM. Evolution of robotic systems for transoral head and neck surgery. Oral Oncol 2018;87:82-8.
  • 2. Tamaki A, Rocco JW, Ozer E. The future of robotic surgery in otolaryngology - head and neck surgery. Oral Oncol 2020 Feb; doi: 10.1016/j.oraloncology.2019.104510. [Epub ahead of print].
  • 3. de Almeida JR, Li R, Magnuson JS, et al. Oncologic Outcomes After Transoral Robotic Surgery: a Multi-institutional Study. JAMA Otolaryngol Head Neck Surg 2015;141:1043-51.
  • 4. Park YM, Lee WJ, Lee JG, et al. Transoral robotic surgery (TORS) in laryngeal and hypopharyngeal cancer. J Laparoendosc Adv Surg Tech A 2009;19:361-8.
  • 5. Weinstein GS, O'Malley BW Jr, Snyder W, Hockstein NG. Transoral robotic surgery: supraglottic partial laryngectomy. Ann Otol Rhinol Laryngol 2007;116:19-23.
  • 6. Ciabatti PG, Burali G, D'Ascanio L. Transoral robotic surgery for large mixed laryngocoele. J Laryngol Otol 2013;127:435-7.
  • 7. Ghanem TA. Transoral robotic-assisted microvascular reconstruction of the oropharynx. Laryngoscope 2011;121:580-2.
  • 8. Ruhle BC, Ferguson Bryan A, Grogan RH. Robot-Assisted Endocrine Surgery: Indications and Drawbacks. J Laparoendosc Adv Surg Tech A 2019;29:129-35.
  • 9. Rangarajan S, Hachem RA, Ozer E, Beer-Furlan A, Prevedello D, Carrau RL. Robotics in Sinus and Skull Base Surgery. Otolaryngol Clin North Am 2017;50:633-41.
  • 10. Cammaroto G, Stringa LM, Zhang H, et al. Alternative Applications of Trans-Oral Robotic Surgery (TORS): a Systematic Review. J Clin Med 2020;9:201.
  • 11. Nakayama M, Holsinger FC, Chevalier D, Orosco RK. The dawn of robotic surgery in otolaryngology-head and neck surgery. Jpn J Clin Oncol 2019;49:404-11.
  • 12. Mohammad S. Robotic surgery. J Oral Biol Craniofac Res 2013;3:2.
  • 13. Camarillo DB, Krummel TM, Salisbury JK Jr. Robotic technology in surgery: past, present, and future. Am J Surg 2004;188:2-15.
  • 14. Falcone T, Goldberg J, Garcia-Ruiz A, Margossian H, Stevens L. Full robotic assistance for laparoscopic tubal anastomosis: a case report. J Laparoendosc Adv Surg Tech A 1999;9:107-13.
  • 15. Marescaux J, Leroy J, Gagner M, et al. Transatlantic robot-assisted telesurgery. Nature 2001;413:379-80.
  • 16. Moran ME. The da Vinci robot. J Endourol 2006;20:986-90.
  • 17. U.S. Food and Drug Administration. 510(k) Premarket Notification Number: K990144; 2000.
  • 18. U.S. Food and Drug Administration. 510(k) Premarket Notification Number: K182371; 2019.
  • 19. Rivera-Serrano CM, Johnson P, Zubiate B, et al. A transoral highly flexible robot: Novel technology and application. Laryngoscope 2012;122:1067-71.
  • 20. Remacle M, M N Prasad V, Lawson G, Plisson L, Bachy V, Van der Vorst S. Transoral robotic surgery (TORS) with the Medrobotics Flex™ System: first surgical application on humans. Eur Arch Otorhinolaryngol 2015;272:1451-5.
  • 21. Mandapathil M, Duvvuri U, Güldner C, Teymoortash A, Lawson G, Werner JA. Transoral surgery for oropharyngeal tumors using the Medrobotics(®) Flex(®) System - a case report. Int J Surg Case Rep. 2015;10:173-5.
  • 22. Mattheis S, Lang S. [A new flexible endoscopy-system for the transoral resection of head and neck tumors]. [Article in German] Laryngorhinootologie 2015;94:25-8.
  • 23. U.S. Food and Drug Administration. 510(k) Premarket Notification Number: K150776; 2015.
  • 24. Hussain T, Lang S, Haßkamp P, Holtmann L, Höing B, Mattheis S. The Flex robotic system compared to transoral laser microsurgery for the resection of supraglottic carcinomas: first results and preliminary oncologic outcomes. Eur Arch Otorhinolaryngol 2020;277:917-24.
  • 25. Haus BM, Kambham N, Le D, Moll FM, Gourin C, Terris DJ. Surgical robotic applications in otolaryngology. Laryngoscope 2003;113:1139-44.
  • 26. Weinstein GS, O'malley BW Jr, Hockstein NG. Transoral robotic surgery: supraglottic laryngectomy in a canine model. Laryngoscope 2005;115:1315-9.
  • 27. Hockstein NG, Nolan JP, O'malley BW Jr, Woo YJ. Robotic microlaryngeal surgery: a technical feasibility study using the daVinci surgical robot and an airway mannequin. Laryngoscope 2005;115:780-5.
  • 28. Hockstein NG, Nolan JP, O'Malley BW Jr, Woo YJ. Robot-assisted pharyngeal and laryngeal microsurgery: results of robotic cadaver dissections. Laryngoscope 2005;115:1003-8.
  • 29. Hockstein NG, Weinstein GS, O'malley BW Jr. Maintenance of hemostasis in transoral robotic surgery. ORL J Otorhinolaryngol Relat Spec 2005;67:220-4.
  • 30. McLeod IK, Melder PC. Da Vinci robot-assisted excision of a vallecular cyst: a case report. Ear Nose Throat J 2005;84:170-2.
  • 31. U.S. Food and Drug Administration. 510(k) Premarket Notification Number: K090993; 2009.
  • 32. Weinstein GS, O'Malley BW Jr, Desai SC, Quon H. Transoral robotic surgery: does the ends justify the means? Curr Opin Otolaryngol Head Neck Surg 2009;17:126-31.
  • 33. Lörincz BB, Jowett N, Knecht R. Decision management in transoral robotic surgery: Indications, individual patient selection, and role in the multidisciplinary treatment for head and neck cancer from a European perspective. Head Neck 2016;38:2190-6.
  • 34. Moorthy K, Munz Y, Dosis A, et al. Dexterity enhancement with robotic surgery. Surg Endosc 2004;18:790-5.
  • 35. Gangwani K, Shetty L, Seshagiri R, Kulkarni D. Comparison of TORS with Conventional Surgery for Oropharyngeal Carcinomas in T1-T4 Lesions. Ann Maxillofac Surg 2019;9:387-392.
  • 36. de Almeida JR, Byrd JK, Wu R, et al. A systematic review of transoral robotic surgery and radiotherapy for early oropharynx cancer: a systematic review. Laryngoscope 2014;124:2096-102.
  • 37. Chen AM, Daly ME, Luu Q, Donald PJ, Farwell DG. Comparison of functional outcomes and quality of life between transoral surgery and definitive chemoradiotherapy for oropharyngeal cancer. Head Neck 2015;37:381-5.
  • 38. Moore EJ, Olsen SM, Laborde RR, et al. Long-term functional and oncologic results of transoral robotic surgery for oropharyngeal squamous cell carcinoma. Mayo Clin Proc 2012;87:219-25.
  • 39. Howard J, Masterson L, Dwivedi RC, et al. Minimally invasive surgery versus radiotherapy/chemoradiotherapy for small-volume primary oropharyngeal carcinoma. Cochrane Database Syst Rev 2016;12:CD010963.
  • 40. Bates JE, Hitchcock KE, Mendenhall WM, Dziegielewski PT, Amdur RJ. Comparing national practice versus standard guidelines for the use of adjuvant treatment following robotic surgery for oropharyngeal squamous cell carcinoma. Head Neck 2020;42:2602-6.
  • 41. Cracchiolo JR, Baxi SS, Morris LG, et al. Increase in primary surgical treatment of T1 and T2 oropharyngeal squamous cell carcinoma and rates of adverse pathologic features: National Cancer Data Base. Cancer 2016;122:1523-32.
  • 42. Nichols AC, Theurer J, Prisman E, et al. Radiotherapy versus transoral robotic surgery and neck dissection for oropharyngeal squamous cell carcinoma (ORATOR): an open-label, phase 2, randomised trial. Lancet Oncol. 2019;20:1349-59.
  • 43. Ferris RL, Flamand Y, Weinstein GS, et al. Transoral robotic surgical resection followed by randomization to low- or standard-dose IMRT in resectable p16+ locally advanced oropharynx cancer: A trial of the ECOG-ACRIN Cancer Research Group (E3311). J Clin Oncol 38: 2020 (suppl; abstr 6500).
  • 44. Mehta V, Johnson P, Tassler A, et al. A new paradigm for the diagnosis and management of unknown primary tumors of the head and neck: a role for transoral robotic surgery. Laryngoscope 2013;123:146-51.
  • 45. Geltzeiler M, Doerfler S, Turner M, et al. Transoral robotic surgery for management of cervical unknown primary squamous cell carcinoma: Updates on efficacy, surgical technique and margin status. Oral Oncol 2017;66:9-13.
  • 46. Meccariello G, Cammaroto G, Ofo E, et al. The emerging role of trans-oral robotic surgery for the detection of the primary tumour site in patients with head-neck unknown primary cancers: A meta-analysis. Auris Nasus Larynx. 2019;46:663-71.
  • 47. Lechien JR, Fakhry N, Saussez S, et al. Surgical, clinical and functional outcomes of transoral robotic surgery for supraglottic laryngeal cancers: A systematic review. Oral Oncol 2020 Jun; doi: 10.1016/j.oraloncology.2020.104848. [Epub ahead of print].
  • 48. Slama K, Slouka D, Slipka J, Fischer S. Short-term postoperative distress associated with open vs. transoral robotic surgery (TORS) in patients with T1-T2 carcinomas of the tongue base and supraglottis. Biomed Pap Med Fac Univ Palacky Olomouc Czech Repub 2016;160:423-8.
  • 49. Asik MB, Satar B, Serdar M. Meta-analytic comparison of robotic and transoral laser surgical procedures in supraglottic carcinoma. J Laryngol Otol 2019;133:404-12.
  • 50. Smith RV, Schiff BA, Sarta C, Hans S, Brasnu D. Transoral robotic total laryngectomy. Laryngoscope 2013;123:678-82.
  • 51. Lawson G, Mendelsohn A, Fakhoury R, et al. Transoral Robotic Surgery Total Laryngectomy. ORL J Otorhinolaryngol Relat Spec 2018;80:171-7.
  • 52. Wang CC, Lin WJ, De Virgilio A, Liu SA, Chen SH, Liao JS. Long-term outcomes of trans-oral robotic surgery-assisted total laryngectomy for recurrent laryngeal cancers. Jpn J Clin Oncol 2020;50:653-60.
  • 53. Kayhan FT, Kaya KH, Sayin I. Transoral robotic cordectomy for early glottic carcinoma. Ann Otol Rhinol Laryngol 2012;121:497-502.
  • 54. Lallemant B, Chambon G, Garrel R, et al. Transoral robotic surgery for the treatment of T1-T2 carcinoma of the larynx: preliminary study. Laryngoscope. 2013;123:2485-90.
  • 55. Kayhan FT, Koc AK, Erdim I. Oncological outcomes of early glottic carcinoma treated with transoral robotic surgery. Auris Nasus Larynx 2019;46:285-93.
  • 56. Persky MS, Daly JF. Combined therapy vs curative radiation in the treatment of pyriform sinus carcinoma. Otolaryngol Head Neck Surg 1981;89:87-91.
  • 57. Hassid S, Van der Vorst S, Delahaut G, Ambroise J, Lawson G. Transoral robotic surgery hypopharyngectomy (TORSH): feasibility and outcomes. Eur Arch Otorhinolaryngol 2020 May; doi: 10.1007/s00405-020-05984-y. [Epub ahead of print].
  • 58. De Virgilio A, Iocca O, Malvezzi L, et al. The Emerging Role of Robotic Surgery among Minimally Invasive Surgical Approaches in the Treatment of Hypopharyngeal Carcinoma: Systematic Review and Meta-Analysis. J Clin Med 2019;8:256.
  • 59. Choi Y, Lee JH, Kim YH, et al. Impact of postthyroidectomy scar on the quality of life of thyroid cancer patients. Ann Dermatol 2014;26:693-9.
  • 60. Kang SW, Jeong JJ, Yun JS, et al. Robot-assisted endoscopic surgery for thyroid cancer: experience with the first 100 patients. Surg Endosc 2009;23:2399-406.
  • 61. Kim K, Lee S, Bae JS, Kim JS. Comparison of long-term surgical outcome between transaxillary endoscopic and conventional open thyroidectomy in patients with differentiated thyroid carcinoma: a propensity score matching study. Surg Endosc 2020 Jun; doi: 10.1007/s00464-020-07721-2. [Epub ahead of print].
  • 62. Jacobs D, Torabi SJ, Gibson C, Rahmati R, Mehra S, Judson BL. Assessing National Utilization Trends and Outcomes of Robotic and Endoscopic Thyroidectomy in the United States. Otolaryngol Head Neck Surg 2020 Jun; doi: 10.1177/0194599820927699. [Epub ahead of print].
  • 63. Tolley N, Arora A, Palazzo F, et al. Robotic-assisted parathyroidectomy: a feasibility study. Otolaryngol Head Neck Surg 2011;144:859-66.
  • 64. Tolley N, Garas G, Palazzo F, et al. Long-term prospective evaluation comparing robotic parathyroidectomy with minimally invasive open parathyroidectomy for primary hyperparathyroidism. Head Neck 2016;38:300-6.
  • 65. Kang SW, Lee SH, Ryu HR, et al. Initial experience with robot-assisted modified radical neck dissection for the management of thyroid carcinoma with lateral neck node metastasis. Surgery 2010;148:1214-21.
  • 66. Kim WS, Lee HS, Kang SM, et al. Feasibility of robot-assisted neck dissections via a transaxillary and retroauricular ("TARA") approach in head and neck cancer: preliminary results. Ann Surg Oncol 2012;19:1009-17.
  • 67. Sukato DC, Ballard DP, Abramowitz JM, Rosenfeld RM, Mlot S. Robotic versus conventional neck dissection: A systematic review and meta-analysis. Laryngoscope 2019;129:1587-96.
  • 68. Prosser JD, Bush CM, Solares CA, Brown JJ. Trans-oral robotic submandibular gland removal. J Robot Surg 2013;7:87-90.
  • 69. Yang TL. Robotic surgery for submandibular gland resection through a trans-hairline approach: The first human series and comparison with applicable approaches. Head Neck 2018;40:793-800.
  • 70. Walvekar RR, Tyler PD, Tammareddi N, Peters G. Robotic-assisted transoral removal of a submandibular megalith. Laryngoscope 2011;121:534-7.
  • 71. Tampio AJF, Marzouk MF. Robot-assisted sialolithotomy with sialoendoscopy: a review of safety, efficacy and cost. J Robot Surg 2020 May 29; doi: 10.1007/s11701-020-01097-0. [Epub ahead of print].
  • 72. Kupferman ME, Hanna E. Robotic surgery of the skull base. Otolaryngol Clin North Am 2014;47:415-23.
  • 73. Hanna EY, Holsinger C, DeMonte F, Kupferman M. Robotic endoscopic surgery of the skull base: a novel surgical approach. Arch Otolaryngol Head Neck Surg 2007;133:1209-14.
  • 74. Kupferman M, Demonte F, Holsinger FC, Hanna E. Transantral robotic access to the pituitary gland. Otolaryngol Head Neck Surg 2009;141:413-5.
  • 75. O'Malley BW Jr, Weinstein GS. Robotic anterior and midline skull base surgery: preclinical investigations. Int J Radiat Oncol Biol Phys 2007;69:125-8.
  • 76. Kupferman ME, Demonte F, Levine N, Hanna E. Feasibility of a robotic surgical approach to reconstruct the skull base. Skull Base 2011;21:79-82.
  • 77. Schuler PJ, Scheithauer M, Rotter N, Veit J, Duvvuri U, Hoffmann TK. A single-port operator-controlled flexible endoscope system for endoscopic skull base surgery. HNO 2015;63:189-94.
  • 78. Vicini C, Dallan I, Canzi P, Frassineti S, La Pietra MG, Montevecchi F. Transoral robotic tongue base resection in obstructive sleep apnoea-hypopnoea syndrome: a preliminary report. ORL J Otorhinolaryngol Relat Spec 2010;72:22-7.
  • 79. Garas G, Kythreotou A, Georgalas C, et al. Is transoral robotic surgery a safe and effective multilevel treatment for obstructive sleep apnoea in obese patients following failure of conventional treatment(s)? Ann Med Surg (Lond) 2017;19:55-61.
  • 80. Ozer E, Waltonen J. Transoral robotic nasopharyngectomy: a novel approach for nasopharyngeal lesions. Laryngoscope 2008;118:1613-6.
  • 81. Richmon JD. Transoral palate-sparing nasopharyngectomy with the Flex® System: preclinical study. Laryngoscope 2015;125:318-22.
  • 82. Tsang RK, Holsinger FC. Transoral endoscopic nasopharyngectomy with a flexible next-generation robotic surgical system. Laryngoscope 2016;126:2257-62.
  • 83. López F, Suárez C, Vander Poorten V, et al. Contemporary management of primary parapharyngeal space tumors. Head Neck 2019;41:522-35.
  • 84. Chu F, Tagliabue M, Giugliano G, Calabrese L, Preda L, Ansarin M. From transmandibular to transoral robotic approach for parapharyngeal space tumors. Am J Otolaryngol 2017;38:375-9.
  • 85. Chan JY, Tsang RK, Eisele DW, Richmon JD. Transoral robotic surgery of the parapharyngeal space: a case series and systematic review. Head Neck 2015;37:293-8.
  • 86. Chu F, De Berardinis R, Tagliabue M, Zorzi S, Bandi F, Ansarin M. The Role of Transoral Robotic Surgery for Parapharyngeal Space: Experience of a Tertiary Center. J Craniofac Surg 2020;31:117-20.
  • 87. Garas G, Cingolani I, Panzarasa P, Darzi A, Athanasiou T. Network analysis of surgical innovation: Measuring value and the virality of diffusion in robotic surgery. PLoS One 2017;12:e0183332.
  • 88. Malik HT, Marti J, Darzi A, Mossialos E. Savings from reducing low-value general surgical interventions. Br J Surg 2018;105:13-25.
  • 89. Garas G, Tolley N. Robotics in otorhinolaryngology - head and neck surgery. Ann R Coll Surg Engl 2018;100:34-41.
  • 90. Chan JYK, Holsinger FC, Liu S, Sorger JM, Azizian M, Tsang RKY. Augmented reality for image guidance in transoral robotic surgery. J Robot Surg 2020;14:579-83.
  • 91. Friedrich DT, Dürselen L, Mayer B, et al. Features of haptic and tactile feedback in TORS-a comparison of available surgical systems. J Robot Surg 2018;12:103-8.
  • 92. Desai SC, Sung CK, Genden EM. Transoral robotic surgery using an image guidance system. Laryngoscope 2008;118:2003-5.
  • 93. Okamura AM. Haptic feedback in robot-assisted minimally invasive surgery. Curr Opin Urol 2009;19:102-7.
  • 94. Haque R, Contreras R, McNicoll MP, Eckberg EC, Petitti DB. Surgical margins and survival after head and neck cancer surgery. BMC Ear Nose Throat Disord 2006;6:2.
  • 95. Patsias A, Giraldez-Rodriguez L, Polydorides AD, et al. Feasibility of transoral robotic-assisted high-resolution microendoscopic imaging of oropharyngeal squamous cell carcinoma. Head Neck 2015;37:99-102.
  • 96. Gorpas D, Phipps J, Bec J, et al. Autofluorescence lifetime augmented reality as a means for real-time robotic surgery guidance in human patients. Sci Rep 2019;9:1187.
  • 97. Yoo MH, Lee HS, Yang CJ, et al. A cadaver study of mastoidectomy using an image-guided human-robot collaborative control system. Laryngoscope Investig Otolaryngol 2017;2:208-14.
  • 98. Caversaccio M, Gavaghan K, Wimmer W, et al. Robotic cochlear implantation: surgical procedure and first clinical experience. Acta Otolaryngol 2017;137:447-54.
  • 99. Dillon NP, Balachandran R, Siebold MA, Webster RJ 3rd, Wanna GB, Labadie RF. Cadaveric Testing of Robot-Assisted Access to the Internal Auditory Canal for Vestibular Schwannoma Removal. Otol Neurotol 2017;38:441-7.

Robotic Surgery in Otolaryngology-Head and Neck Surgery: Yesterday, Today and Tomorrow

Year 2020, Volume: 10 Issue: 2, 361 - 371, 25.08.2020
https://doi.org/10.32448/entupdates.780604

Abstract

In the present review, we aim to give an overview of the development and utilization of robotic surgery in otolaryngology-head and neck surgery from its introduction, current status, and future applications. Robotic surgery has been applied either pre-clinically or is already in clinical use for several indications in otolaryngology and head and neck surgery. Due to its rapid progress and technological development, it appears it will be a more active tool in the future for the diagnosis and treatment of a number of diseases in otolaryngology-head and neck surgery practice.

References

  • 1. Poon H, Li C, Gao W, Ren H, Lim CM. Evolution of robotic systems for transoral head and neck surgery. Oral Oncol 2018;87:82-8.
  • 2. Tamaki A, Rocco JW, Ozer E. The future of robotic surgery in otolaryngology - head and neck surgery. Oral Oncol 2020 Feb; doi: 10.1016/j.oraloncology.2019.104510. [Epub ahead of print].
  • 3. de Almeida JR, Li R, Magnuson JS, et al. Oncologic Outcomes After Transoral Robotic Surgery: a Multi-institutional Study. JAMA Otolaryngol Head Neck Surg 2015;141:1043-51.
  • 4. Park YM, Lee WJ, Lee JG, et al. Transoral robotic surgery (TORS) in laryngeal and hypopharyngeal cancer. J Laparoendosc Adv Surg Tech A 2009;19:361-8.
  • 5. Weinstein GS, O'Malley BW Jr, Snyder W, Hockstein NG. Transoral robotic surgery: supraglottic partial laryngectomy. Ann Otol Rhinol Laryngol 2007;116:19-23.
  • 6. Ciabatti PG, Burali G, D'Ascanio L. Transoral robotic surgery for large mixed laryngocoele. J Laryngol Otol 2013;127:435-7.
  • 7. Ghanem TA. Transoral robotic-assisted microvascular reconstruction of the oropharynx. Laryngoscope 2011;121:580-2.
  • 8. Ruhle BC, Ferguson Bryan A, Grogan RH. Robot-Assisted Endocrine Surgery: Indications and Drawbacks. J Laparoendosc Adv Surg Tech A 2019;29:129-35.
  • 9. Rangarajan S, Hachem RA, Ozer E, Beer-Furlan A, Prevedello D, Carrau RL. Robotics in Sinus and Skull Base Surgery. Otolaryngol Clin North Am 2017;50:633-41.
  • 10. Cammaroto G, Stringa LM, Zhang H, et al. Alternative Applications of Trans-Oral Robotic Surgery (TORS): a Systematic Review. J Clin Med 2020;9:201.
  • 11. Nakayama M, Holsinger FC, Chevalier D, Orosco RK. The dawn of robotic surgery in otolaryngology-head and neck surgery. Jpn J Clin Oncol 2019;49:404-11.
  • 12. Mohammad S. Robotic surgery. J Oral Biol Craniofac Res 2013;3:2.
  • 13. Camarillo DB, Krummel TM, Salisbury JK Jr. Robotic technology in surgery: past, present, and future. Am J Surg 2004;188:2-15.
  • 14. Falcone T, Goldberg J, Garcia-Ruiz A, Margossian H, Stevens L. Full robotic assistance for laparoscopic tubal anastomosis: a case report. J Laparoendosc Adv Surg Tech A 1999;9:107-13.
  • 15. Marescaux J, Leroy J, Gagner M, et al. Transatlantic robot-assisted telesurgery. Nature 2001;413:379-80.
  • 16. Moran ME. The da Vinci robot. J Endourol 2006;20:986-90.
  • 17. U.S. Food and Drug Administration. 510(k) Premarket Notification Number: K990144; 2000.
  • 18. U.S. Food and Drug Administration. 510(k) Premarket Notification Number: K182371; 2019.
  • 19. Rivera-Serrano CM, Johnson P, Zubiate B, et al. A transoral highly flexible robot: Novel technology and application. Laryngoscope 2012;122:1067-71.
  • 20. Remacle M, M N Prasad V, Lawson G, Plisson L, Bachy V, Van der Vorst S. Transoral robotic surgery (TORS) with the Medrobotics Flex™ System: first surgical application on humans. Eur Arch Otorhinolaryngol 2015;272:1451-5.
  • 21. Mandapathil M, Duvvuri U, Güldner C, Teymoortash A, Lawson G, Werner JA. Transoral surgery for oropharyngeal tumors using the Medrobotics(®) Flex(®) System - a case report. Int J Surg Case Rep. 2015;10:173-5.
  • 22. Mattheis S, Lang S. [A new flexible endoscopy-system for the transoral resection of head and neck tumors]. [Article in German] Laryngorhinootologie 2015;94:25-8.
  • 23. U.S. Food and Drug Administration. 510(k) Premarket Notification Number: K150776; 2015.
  • 24. Hussain T, Lang S, Haßkamp P, Holtmann L, Höing B, Mattheis S. The Flex robotic system compared to transoral laser microsurgery for the resection of supraglottic carcinomas: first results and preliminary oncologic outcomes. Eur Arch Otorhinolaryngol 2020;277:917-24.
  • 25. Haus BM, Kambham N, Le D, Moll FM, Gourin C, Terris DJ. Surgical robotic applications in otolaryngology. Laryngoscope 2003;113:1139-44.
  • 26. Weinstein GS, O'malley BW Jr, Hockstein NG. Transoral robotic surgery: supraglottic laryngectomy in a canine model. Laryngoscope 2005;115:1315-9.
  • 27. Hockstein NG, Nolan JP, O'malley BW Jr, Woo YJ. Robotic microlaryngeal surgery: a technical feasibility study using the daVinci surgical robot and an airway mannequin. Laryngoscope 2005;115:780-5.
  • 28. Hockstein NG, Nolan JP, O'Malley BW Jr, Woo YJ. Robot-assisted pharyngeal and laryngeal microsurgery: results of robotic cadaver dissections. Laryngoscope 2005;115:1003-8.
  • 29. Hockstein NG, Weinstein GS, O'malley BW Jr. Maintenance of hemostasis in transoral robotic surgery. ORL J Otorhinolaryngol Relat Spec 2005;67:220-4.
  • 30. McLeod IK, Melder PC. Da Vinci robot-assisted excision of a vallecular cyst: a case report. Ear Nose Throat J 2005;84:170-2.
  • 31. U.S. Food and Drug Administration. 510(k) Premarket Notification Number: K090993; 2009.
  • 32. Weinstein GS, O'Malley BW Jr, Desai SC, Quon H. Transoral robotic surgery: does the ends justify the means? Curr Opin Otolaryngol Head Neck Surg 2009;17:126-31.
  • 33. Lörincz BB, Jowett N, Knecht R. Decision management in transoral robotic surgery: Indications, individual patient selection, and role in the multidisciplinary treatment for head and neck cancer from a European perspective. Head Neck 2016;38:2190-6.
  • 34. Moorthy K, Munz Y, Dosis A, et al. Dexterity enhancement with robotic surgery. Surg Endosc 2004;18:790-5.
  • 35. Gangwani K, Shetty L, Seshagiri R, Kulkarni D. Comparison of TORS with Conventional Surgery for Oropharyngeal Carcinomas in T1-T4 Lesions. Ann Maxillofac Surg 2019;9:387-392.
  • 36. de Almeida JR, Byrd JK, Wu R, et al. A systematic review of transoral robotic surgery and radiotherapy for early oropharynx cancer: a systematic review. Laryngoscope 2014;124:2096-102.
  • 37. Chen AM, Daly ME, Luu Q, Donald PJ, Farwell DG. Comparison of functional outcomes and quality of life between transoral surgery and definitive chemoradiotherapy for oropharyngeal cancer. Head Neck 2015;37:381-5.
  • 38. Moore EJ, Olsen SM, Laborde RR, et al. Long-term functional and oncologic results of transoral robotic surgery for oropharyngeal squamous cell carcinoma. Mayo Clin Proc 2012;87:219-25.
  • 39. Howard J, Masterson L, Dwivedi RC, et al. Minimally invasive surgery versus radiotherapy/chemoradiotherapy for small-volume primary oropharyngeal carcinoma. Cochrane Database Syst Rev 2016;12:CD010963.
  • 40. Bates JE, Hitchcock KE, Mendenhall WM, Dziegielewski PT, Amdur RJ. Comparing national practice versus standard guidelines for the use of adjuvant treatment following robotic surgery for oropharyngeal squamous cell carcinoma. Head Neck 2020;42:2602-6.
  • 41. Cracchiolo JR, Baxi SS, Morris LG, et al. Increase in primary surgical treatment of T1 and T2 oropharyngeal squamous cell carcinoma and rates of adverse pathologic features: National Cancer Data Base. Cancer 2016;122:1523-32.
  • 42. Nichols AC, Theurer J, Prisman E, et al. Radiotherapy versus transoral robotic surgery and neck dissection for oropharyngeal squamous cell carcinoma (ORATOR): an open-label, phase 2, randomised trial. Lancet Oncol. 2019;20:1349-59.
  • 43. Ferris RL, Flamand Y, Weinstein GS, et al. Transoral robotic surgical resection followed by randomization to low- or standard-dose IMRT in resectable p16+ locally advanced oropharynx cancer: A trial of the ECOG-ACRIN Cancer Research Group (E3311). J Clin Oncol 38: 2020 (suppl; abstr 6500).
  • 44. Mehta V, Johnson P, Tassler A, et al. A new paradigm for the diagnosis and management of unknown primary tumors of the head and neck: a role for transoral robotic surgery. Laryngoscope 2013;123:146-51.
  • 45. Geltzeiler M, Doerfler S, Turner M, et al. Transoral robotic surgery for management of cervical unknown primary squamous cell carcinoma: Updates on efficacy, surgical technique and margin status. Oral Oncol 2017;66:9-13.
  • 46. Meccariello G, Cammaroto G, Ofo E, et al. The emerging role of trans-oral robotic surgery for the detection of the primary tumour site in patients with head-neck unknown primary cancers: A meta-analysis. Auris Nasus Larynx. 2019;46:663-71.
  • 47. Lechien JR, Fakhry N, Saussez S, et al. Surgical, clinical and functional outcomes of transoral robotic surgery for supraglottic laryngeal cancers: A systematic review. Oral Oncol 2020 Jun; doi: 10.1016/j.oraloncology.2020.104848. [Epub ahead of print].
  • 48. Slama K, Slouka D, Slipka J, Fischer S. Short-term postoperative distress associated with open vs. transoral robotic surgery (TORS) in patients with T1-T2 carcinomas of the tongue base and supraglottis. Biomed Pap Med Fac Univ Palacky Olomouc Czech Repub 2016;160:423-8.
  • 49. Asik MB, Satar B, Serdar M. Meta-analytic comparison of robotic and transoral laser surgical procedures in supraglottic carcinoma. J Laryngol Otol 2019;133:404-12.
  • 50. Smith RV, Schiff BA, Sarta C, Hans S, Brasnu D. Transoral robotic total laryngectomy. Laryngoscope 2013;123:678-82.
  • 51. Lawson G, Mendelsohn A, Fakhoury R, et al. Transoral Robotic Surgery Total Laryngectomy. ORL J Otorhinolaryngol Relat Spec 2018;80:171-7.
  • 52. Wang CC, Lin WJ, De Virgilio A, Liu SA, Chen SH, Liao JS. Long-term outcomes of trans-oral robotic surgery-assisted total laryngectomy for recurrent laryngeal cancers. Jpn J Clin Oncol 2020;50:653-60.
  • 53. Kayhan FT, Kaya KH, Sayin I. Transoral robotic cordectomy for early glottic carcinoma. Ann Otol Rhinol Laryngol 2012;121:497-502.
  • 54. Lallemant B, Chambon G, Garrel R, et al. Transoral robotic surgery for the treatment of T1-T2 carcinoma of the larynx: preliminary study. Laryngoscope. 2013;123:2485-90.
  • 55. Kayhan FT, Koc AK, Erdim I. Oncological outcomes of early glottic carcinoma treated with transoral robotic surgery. Auris Nasus Larynx 2019;46:285-93.
  • 56. Persky MS, Daly JF. Combined therapy vs curative radiation in the treatment of pyriform sinus carcinoma. Otolaryngol Head Neck Surg 1981;89:87-91.
  • 57. Hassid S, Van der Vorst S, Delahaut G, Ambroise J, Lawson G. Transoral robotic surgery hypopharyngectomy (TORSH): feasibility and outcomes. Eur Arch Otorhinolaryngol 2020 May; doi: 10.1007/s00405-020-05984-y. [Epub ahead of print].
  • 58. De Virgilio A, Iocca O, Malvezzi L, et al. The Emerging Role of Robotic Surgery among Minimally Invasive Surgical Approaches in the Treatment of Hypopharyngeal Carcinoma: Systematic Review and Meta-Analysis. J Clin Med 2019;8:256.
  • 59. Choi Y, Lee JH, Kim YH, et al. Impact of postthyroidectomy scar on the quality of life of thyroid cancer patients. Ann Dermatol 2014;26:693-9.
  • 60. Kang SW, Jeong JJ, Yun JS, et al. Robot-assisted endoscopic surgery for thyroid cancer: experience with the first 100 patients. Surg Endosc 2009;23:2399-406.
  • 61. Kim K, Lee S, Bae JS, Kim JS. Comparison of long-term surgical outcome between transaxillary endoscopic and conventional open thyroidectomy in patients with differentiated thyroid carcinoma: a propensity score matching study. Surg Endosc 2020 Jun; doi: 10.1007/s00464-020-07721-2. [Epub ahead of print].
  • 62. Jacobs D, Torabi SJ, Gibson C, Rahmati R, Mehra S, Judson BL. Assessing National Utilization Trends and Outcomes of Robotic and Endoscopic Thyroidectomy in the United States. Otolaryngol Head Neck Surg 2020 Jun; doi: 10.1177/0194599820927699. [Epub ahead of print].
  • 63. Tolley N, Arora A, Palazzo F, et al. Robotic-assisted parathyroidectomy: a feasibility study. Otolaryngol Head Neck Surg 2011;144:859-66.
  • 64. Tolley N, Garas G, Palazzo F, et al. Long-term prospective evaluation comparing robotic parathyroidectomy with minimally invasive open parathyroidectomy for primary hyperparathyroidism. Head Neck 2016;38:300-6.
  • 65. Kang SW, Lee SH, Ryu HR, et al. Initial experience with robot-assisted modified radical neck dissection for the management of thyroid carcinoma with lateral neck node metastasis. Surgery 2010;148:1214-21.
  • 66. Kim WS, Lee HS, Kang SM, et al. Feasibility of robot-assisted neck dissections via a transaxillary and retroauricular ("TARA") approach in head and neck cancer: preliminary results. Ann Surg Oncol 2012;19:1009-17.
  • 67. Sukato DC, Ballard DP, Abramowitz JM, Rosenfeld RM, Mlot S. Robotic versus conventional neck dissection: A systematic review and meta-analysis. Laryngoscope 2019;129:1587-96.
  • 68. Prosser JD, Bush CM, Solares CA, Brown JJ. Trans-oral robotic submandibular gland removal. J Robot Surg 2013;7:87-90.
  • 69. Yang TL. Robotic surgery for submandibular gland resection through a trans-hairline approach: The first human series and comparison with applicable approaches. Head Neck 2018;40:793-800.
  • 70. Walvekar RR, Tyler PD, Tammareddi N, Peters G. Robotic-assisted transoral removal of a submandibular megalith. Laryngoscope 2011;121:534-7.
  • 71. Tampio AJF, Marzouk MF. Robot-assisted sialolithotomy with sialoendoscopy: a review of safety, efficacy and cost. J Robot Surg 2020 May 29; doi: 10.1007/s11701-020-01097-0. [Epub ahead of print].
  • 72. Kupferman ME, Hanna E. Robotic surgery of the skull base. Otolaryngol Clin North Am 2014;47:415-23.
  • 73. Hanna EY, Holsinger C, DeMonte F, Kupferman M. Robotic endoscopic surgery of the skull base: a novel surgical approach. Arch Otolaryngol Head Neck Surg 2007;133:1209-14.
  • 74. Kupferman M, Demonte F, Holsinger FC, Hanna E. Transantral robotic access to the pituitary gland. Otolaryngol Head Neck Surg 2009;141:413-5.
  • 75. O'Malley BW Jr, Weinstein GS. Robotic anterior and midline skull base surgery: preclinical investigations. Int J Radiat Oncol Biol Phys 2007;69:125-8.
  • 76. Kupferman ME, Demonte F, Levine N, Hanna E. Feasibility of a robotic surgical approach to reconstruct the skull base. Skull Base 2011;21:79-82.
  • 77. Schuler PJ, Scheithauer M, Rotter N, Veit J, Duvvuri U, Hoffmann TK. A single-port operator-controlled flexible endoscope system for endoscopic skull base surgery. HNO 2015;63:189-94.
  • 78. Vicini C, Dallan I, Canzi P, Frassineti S, La Pietra MG, Montevecchi F. Transoral robotic tongue base resection in obstructive sleep apnoea-hypopnoea syndrome: a preliminary report. ORL J Otorhinolaryngol Relat Spec 2010;72:22-7.
  • 79. Garas G, Kythreotou A, Georgalas C, et al. Is transoral robotic surgery a safe and effective multilevel treatment for obstructive sleep apnoea in obese patients following failure of conventional treatment(s)? Ann Med Surg (Lond) 2017;19:55-61.
  • 80. Ozer E, Waltonen J. Transoral robotic nasopharyngectomy: a novel approach for nasopharyngeal lesions. Laryngoscope 2008;118:1613-6.
  • 81. Richmon JD. Transoral palate-sparing nasopharyngectomy with the Flex® System: preclinical study. Laryngoscope 2015;125:318-22.
  • 82. Tsang RK, Holsinger FC. Transoral endoscopic nasopharyngectomy with a flexible next-generation robotic surgical system. Laryngoscope 2016;126:2257-62.
  • 83. López F, Suárez C, Vander Poorten V, et al. Contemporary management of primary parapharyngeal space tumors. Head Neck 2019;41:522-35.
  • 84. Chu F, Tagliabue M, Giugliano G, Calabrese L, Preda L, Ansarin M. From transmandibular to transoral robotic approach for parapharyngeal space tumors. Am J Otolaryngol 2017;38:375-9.
  • 85. Chan JY, Tsang RK, Eisele DW, Richmon JD. Transoral robotic surgery of the parapharyngeal space: a case series and systematic review. Head Neck 2015;37:293-8.
  • 86. Chu F, De Berardinis R, Tagliabue M, Zorzi S, Bandi F, Ansarin M. The Role of Transoral Robotic Surgery for Parapharyngeal Space: Experience of a Tertiary Center. J Craniofac Surg 2020;31:117-20.
  • 87. Garas G, Cingolani I, Panzarasa P, Darzi A, Athanasiou T. Network analysis of surgical innovation: Measuring value and the virality of diffusion in robotic surgery. PLoS One 2017;12:e0183332.
  • 88. Malik HT, Marti J, Darzi A, Mossialos E. Savings from reducing low-value general surgical interventions. Br J Surg 2018;105:13-25.
  • 89. Garas G, Tolley N. Robotics in otorhinolaryngology - head and neck surgery. Ann R Coll Surg Engl 2018;100:34-41.
  • 90. Chan JYK, Holsinger FC, Liu S, Sorger JM, Azizian M, Tsang RKY. Augmented reality for image guidance in transoral robotic surgery. J Robot Surg 2020;14:579-83.
  • 91. Friedrich DT, Dürselen L, Mayer B, et al. Features of haptic and tactile feedback in TORS-a comparison of available surgical systems. J Robot Surg 2018;12:103-8.
  • 92. Desai SC, Sung CK, Genden EM. Transoral robotic surgery using an image guidance system. Laryngoscope 2008;118:2003-5.
  • 93. Okamura AM. Haptic feedback in robot-assisted minimally invasive surgery. Curr Opin Urol 2009;19:102-7.
  • 94. Haque R, Contreras R, McNicoll MP, Eckberg EC, Petitti DB. Surgical margins and survival after head and neck cancer surgery. BMC Ear Nose Throat Disord 2006;6:2.
  • 95. Patsias A, Giraldez-Rodriguez L, Polydorides AD, et al. Feasibility of transoral robotic-assisted high-resolution microendoscopic imaging of oropharyngeal squamous cell carcinoma. Head Neck 2015;37:99-102.
  • 96. Gorpas D, Phipps J, Bec J, et al. Autofluorescence lifetime augmented reality as a means for real-time robotic surgery guidance in human patients. Sci Rep 2019;9:1187.
  • 97. Yoo MH, Lee HS, Yang CJ, et al. A cadaver study of mastoidectomy using an image-guided human-robot collaborative control system. Laryngoscope Investig Otolaryngol 2017;2:208-14.
  • 98. Caversaccio M, Gavaghan K, Wimmer W, et al. Robotic cochlear implantation: surgical procedure and first clinical experience. Acta Otolaryngol 2017;137:447-54.
  • 99. Dillon NP, Balachandran R, Siebold MA, Webster RJ 3rd, Wanna GB, Labadie RF. Cadaveric Testing of Robot-Assisted Access to the Internal Auditory Canal for Vestibular Schwannoma Removal. Otol Neurotol 2017;38:441-7.
There are 99 citations in total.

Details

Primary Language English
Subjects Otorhinolaryngology
Journal Section Articles
Authors

Ali Bayram 0000-0002-0061-1755

Görkem Eskiizmir 0000-0002-3125-8288

Cemal Cingi 0000-0002-3125-8288

Ehab Hanna 0000-0003-3241-2440

Publication Date August 25, 2020
Submission Date August 14, 2020
Acceptance Date August 14, 2020
Published in Issue Year 2020 Volume: 10 Issue: 2

Cite

APA Bayram, A., Eskiizmir, G., Cingi, C., Hanna, E. (2020). Robotic Surgery in Otolaryngology-Head and Neck Surgery: Yesterday, Today and Tomorrow. ENT Updates, 10(2), 361-371. https://doi.org/10.32448/entupdates.780604
AMA Bayram A, Eskiizmir G, Cingi C, Hanna E. Robotic Surgery in Otolaryngology-Head and Neck Surgery: Yesterday, Today and Tomorrow. ENT Updates. August 2020;10(2):361-371. doi:10.32448/entupdates.780604
Chicago Bayram, Ali, Görkem Eskiizmir, Cemal Cingi, and Ehab Hanna. “Robotic Surgery in Otolaryngology-Head and Neck Surgery: Yesterday, Today and Tomorrow”. ENT Updates 10, no. 2 (August 2020): 361-71. https://doi.org/10.32448/entupdates.780604.
EndNote Bayram A, Eskiizmir G, Cingi C, Hanna E (August 1, 2020) Robotic Surgery in Otolaryngology-Head and Neck Surgery: Yesterday, Today and Tomorrow. ENT Updates 10 2 361–371.
IEEE A. Bayram, G. Eskiizmir, C. Cingi, and E. Hanna, “Robotic Surgery in Otolaryngology-Head and Neck Surgery: Yesterday, Today and Tomorrow”, ENT Updates, vol. 10, no. 2, pp. 361–371, 2020, doi: 10.32448/entupdates.780604.
ISNAD Bayram, Ali et al. “Robotic Surgery in Otolaryngology-Head and Neck Surgery: Yesterday, Today and Tomorrow”. ENT Updates 10/2 (August 2020), 361-371. https://doi.org/10.32448/entupdates.780604.
JAMA Bayram A, Eskiizmir G, Cingi C, Hanna E. Robotic Surgery in Otolaryngology-Head and Neck Surgery: Yesterday, Today and Tomorrow. ENT Updates. 2020;10:361–371.
MLA Bayram, Ali et al. “Robotic Surgery in Otolaryngology-Head and Neck Surgery: Yesterday, Today and Tomorrow”. ENT Updates, vol. 10, no. 2, 2020, pp. 361-7, doi:10.32448/entupdates.780604.
Vancouver Bayram A, Eskiizmir G, Cingi C, Hanna E. Robotic Surgery in Otolaryngology-Head and Neck Surgery: Yesterday, Today and Tomorrow. ENT Updates. 2020;10(2):361-7.