Research Article
BibTex RIS Cite

Technology Oriented Struggle Against Climate Change in Transportation Sector: An Empirical Investigation

Year 2024, Volume: 9 Issue: 2, 323 - 335, 30.06.2024
https://doi.org/10.30784/epfad.1364140

Abstract

The transportation sector is one of the most important sectors in which greenhouse gas emissions (GHG) are the highest, thus causing the global warming problem to rise. One of the most effective and international solutions to this problem is considered to be a technology-oriented struggle, and the development of green technologies is encouraged by global authorities. The study aims to investigate the success of the technology-oriented struggle against global warming in the transport sector. In analyses, data on transportation-related greenhouse gas emissions, the number of patents (transport-related climate change mitigation technologies), trade openness, and GDP per capita of 12 OECD countries years between 1999-2017 were used. To identify the long-run and short-run relationship among variables, the Cross-Sectional Autoregressive Distributed Lags Estimator (CSARDL) and also the Mean Group (MG), Augmented Mean Group (AMG), and Common Correlated Effects Mean Group Estimators (CCE) were applied. According to the estimators' findings, no evidence was found that the number of patents and trade openness affected greenhouse gas emissions, but it was determined that GDP positively affected greenhouse gas emissions. As a result, it can be said that the technology-oriented struggle against climate change in the transportation sector alone isn't sufficient to reduce transportation-related GHG emissions.

References

  • Ahmad, M., Jiang, P., Majeed, A., Umar, M., Khan, Z. and Muhammad, S. (2020). The dynamic impact of natural resources, technological innovations and economic growth on ecological footprint: An advanced panel data estimation. Resources Policy, 69, 101817. https://doi.org/10.1016/j.resourpol.2020.101817
  • Ahn, H. and Park, E. (2022). For sustainable development in the transportation sector: Determinants of acceptance of sustainable transportation using the innovation diffusion theory and technology acceptance model. Sustainable Development, 30(5), 1169-1183. https://doi.org/10.1002/sd.2309
  • Al Mamun, M., Sohag, K., Shahbaz, M. and Hammoudeh, S. (2018). Financial markets, innovations and cleaner energy production in OECD countries. Energy Economics, 72, 236-254. https://doi.org/10.1016/j.eneco.2018.04.011
  • Alam, I. and Quazi, R. (2003). Determinants of capital flight: An econometric case study of Bangladesh. International Review of Applied Economics, 17(1), 85-103. https://doi.org/10.1080/713673164
  • Álvarez-Herránz, A., Balsalobre, D., Cantos, J.M. and Shahbaz, M. (2017). Energy innovations-GHG emissions nexus: Fresh empirical evidence from OECD countries. Energy Policy, 101, 90-100. https://doi.org/10.1016/j.enpol.2016.11.030
  • Andrés, L. and Padilla, E. (2018). Driving factors of GHG emissions in the EU transport activity. Transport Policy, 61, 60-74. https://doi.org/10.1016/j.tranpol.2017.10.008
  • Andress, D., Nguyen, T.D. and Das, S. (2011). Reducing GHG emissions in the United States' transportation sector. Energy for Sustainable Development, 15(2), 117-136. https://doi.org/10.1016/j.esd.2011.03.002
  • Bakker, S., Zuidgeest, M., Coninck, H. and Huizenga, C. (2014). Transport, development and climate change mitigation: Towards an integrated approach. Transport Reviews, 34(3), 335–355. https://doi.org/10.1080/01441647.2014.903531
  • Caravella, S., Costantini, V. and Crespi, F. (2021). Mission-oriented policies and technological sovereignty: The case of climate mitigation technologies. Energies, 14(20), 6854. https://doi.org/10.3390/en14206854
  • Chapman, L. (2007). Transport and climate change: A review. Journal of Transport Geography, 15(5), 354-367. https://doi.org/10.1016/j.jtrangeo.2006.11.008
  • Chudik, A. and Pesaran, M.H. (2015). Common correlated effects estimation of heterogeneous dynamic panel data models with weakly exogenous regressors. Journal of Econometrics, 188(2), 393-420. https://doi.org/10.1016/j.jeconom.2015.03.007
  • Dechezleprêtre, A., Glachant, M. and Ménière, Y. (2013). What drives the international transfer of climate change mitigation technologies? Empirical evidence from patent data. Environmental and Resource Economics, 54, 161-178. https://doi.org/10.1007/s10640-012-9592-0
  • Dechezleprêtre, A., Martin, R. and Bassi, S. (2019). Climate change policy, innovation and growth. In R. Fouquet (Eds.), Handbook on green growth (pp. 217-239). UK: Edward Elgar Publishing.
  • Dedinec, A., Markovska, N., Taseska, V., Duic, N. and Kanevce, G. (2013). Assessment of climate change mitigation potential of the Macedonian transport sector. Energy, 57, 177-187. https://doi.org/10.1016/j.energy.2013.05.011
  • Eberhardt, M. and Bond, S. (2009). Cross-section dependence in nonstationary panel models: A novel estimator (MPRA Paper No. 17692). Retrieved from https://mpra.ub.uni-muenchen.de/17870/2/MPRA_paper_17870.pdf
  • EPO. (2022). Searching for patents. Retrieved from https://www.epo.org/searching-for-patents.html
  • Fan, F. and Lei, Y. (2016). Decomposition analysis of energy-related carbon emissions from the transportation sector in Beijing. Transportation Research Part D: Transport and Environment, 42, 135-145. https://doi.org/10.1016/j.trd.2015.11.001
  • Feng, C., Sun, L.X. and Xia, Y.S. (2020). Clarifying the “gains” and “losses” of transport climate mitigation in China from technology and efficiency perspectives. Journal of Cleaner Production, 263, 121545. https://doi.org/10.1016/j.jclepro.2020.121545
  • Fenley, C.A., Machado, W.V. and Fernandes, E. (2007). Air transport and sustainability: Lessons from Amazonas. Applied Geography, 27, 63-77. https://doi.org/10.1016/j.apgeog.2006.12.002
  • Ferreira, J.J.M., Fernandes, C.I. and Ferreira, F.A.F. (2020). Technology transfer, climate change mitigation, and environmental patent impact on sustainability and economic growth: A comparison of European countries. Technological Forecasting & Social Change, 150, 119770. https://doi.org/10.1016/j.techfore.2019.119770
  • Ghannouchi, I., Ouni, F. and Aloulou, F. (2023). Investigating the impact of transportation system and economic growth on carbon emissions: Application of GMM System for 33 european countries. Environmental Science and Pollution Research, 30(39), 90656-90674. https://doi.org/10.1007/s11356-023-28595-6
  • Hacıimamoğlu, T. (2023). Testing the environmental Phillips Curve hypothesis in MIKTA countries: CSARDL test approach. Ordu Üniversitesi Sosyal Bilimler Enstitüsü Sosyal Bilimler Araştırmaları Dergisi, 13(1), 301-316. https://doi.org/10.48146/odusobiad.1104588
  • Hussain, Z. (2022). Environmental and economic-oriented transport efficiency: The role of climate change mitigation technology. Environmental Science and Pollution Research, 29(19), 29165-29182. https://doi.org/10.1007/s11356-021-18392-4
  • IPCC. (1995). Climate change 1995: IPCC second assessment report (A Report of the Intergovermental Panel on Climate Change). Retrieved from https://digital.library.unt.edu/ark:/67531/metadc11834/m1/1/
  • IPCC. (1996). Technologies, policies and measures for mitigating climate change (IPCC Technical Paper I). Retrieved from https://www.ipcc.ch/site/assets/uploads/2018/03/paper-I-en.pdf
  • Johnstone, N., Haščič, I. and Popp, D. (2010). Renewable energy policies and technological innovation: Evidence based on patent counts. Environmental and Resource Economics, 45, 133–155. https://doi.org/10.1007/s10640-009-9309-1
  • Jordaan, S.M., Romo-Rabago, E., McLeary, R., Reidy, L., Nazari, J. and Herremans, I.M. (2017). The role of energy technology innovation in reducing greenhouse gas emissions: A case study of Canada. Renewable and Sustainable Energy Reviews, 78, 1397-1409. https://doi.org/10.1016/j.rser.2017.05.162
  • Karagöl, E., Erbaykal, E. and Ertuğrul, H.M. (2007). Economic growth and electricity consumption in Turkey: A bound test approach. Doğuş Üniversitesi Dergisi, 8(1), 72-80. Retrieved from https://dergipark.org.tr/en/pub/doujournal/
  • Kaypak, Ş. (2011). A sustainable environment for a sustainable development in the process of globalization. KMÜ Sosyal ve Ekonomik Araştırmalar Dergisi, 13(20), 19-33. Retrieved from https://dergipark.org.tr/en/pub/kmusekad/
  • Kılıç, S. (2012). An ecological approach to the economic dimension of sustainable development concept. İstanbul Üniversitesi Siyasal Bilgiler Fakültesi Dergisi, 47, 201-226. Retrieved from https://dergipark.org.tr/en/pub/iusiyasal
  • Longshurst, J., Gibbs, D.C., Raper, D.W. and Conlan, D.E. (1996). Towards sustainable airport development. The Environmentalist, 16, 197-202. https://doi.org/10.1007/BF01324760
  • Mazzarino, M. (2000). The economics of the greenhouse effect: Evaluating the climate change impact due to the transport sector in Italy. Energy Policy, 28(13), 957-966. https://doi.org/10.1016/S0301-4215(00)00078-1
  • Miotti, M., Supran, G.J., Kim, E.J. and Trancik, J.E. (2016). Personal vehicles evaluated against climate change mitigation targets. Environmental Science & Technology, 50(20), 10795-10804. https://doi.org/10.1021/acs.est.6b00177
  • Moreira, J.R. and Pacca, S.A. (2020). The climate change mitigation potential of sugarcane based technologies for automobiles; CO2 negative emissions in sight. Transportation Research Part D: Transport and Environment, 86, 102454. https://doi.org/10.1016/j.trd.2020.102454
  • Narayan, P.K. and Smyth, R. (2006). What determines migration flows from low‐income to high‐income countries? An empirical investigation of Fiji–Us migration 1972–2001. Contemporary Economic Policy, 24(2), 332-342. https://doi.org/10.1093/cep/byj019
  • OECD. (2023). OECD data [Database]. Retrieved from https://data.oecd.org/
  • Our World in Data. (2022). Trade openness [Database]. Retrieved from https://ourworldindata.org/
  • Panepinto, D., Riggio, V.A. and Zanetti, M. (2021). Analysis of the emergent climate change mitigation technologies. International Journal of Environmental Research and Public Health, 18(13), 6767. https://doi.org/10.3390/ijerph18136767
  • Pasimeni, F., Fiorini, A. and Georgakaki, A. (2021). International landscape of the inventive activity on climate change mitigation technologies. A patent analysis. Energy Strategy Reviews, 36, 100677. https://doi.org/10.1016/j.esr.2021.100677
  • Pesaran, M.H. (2006). Estimation and inference in large heterogeneous panels with a multifactor error structure. Econometrica, 74(4), 967-1012. https://doi.org/10.1111/j.1468-0262.2006 .00692.x
  • Pesaran, M.H. (2007). A simple panel unit root test in the presence of cross‐section dependence. Journal of Applied Econometrics, 22(2), 265-312, https://doi.org/10.1002/jae.951
  • Pesaran, M.H. (2015). Testing weak cross-sectional dependence in large panels. Econometric Reviews, 34(6-10), 1089-1117. https://doi.org/10.1080/07474938.2014.956623
  • Pesaran, M.H. and Smith, R. (1995). Estimating long-run relationships from dynamic heterogeneous panels. Journal of econometrics, 68(1), 79-113. https://doi.org/10.1016/0304-4076(94)01644-F
  • Pesaran, M.H. and Yamagata, T. (2008). Testing slope homogeneity in large panels. Journal of Econometrics, 142(1), 50-93. https://doi.org/10.1016/j.jeconom.2007.05.010
  • Princiotta, F.T. (2021). The climate mitigation challenge - Where do we stand? Journal of the Air & Waste Management Association, 71(10), 1234-1250. https://doi.org/10.1080/10962247.2021.1948458
  • Raiser, K., Naims, H. and Bruhn, T. (2017). Corporatization of the climate? Innovation, intellectual property rights, and patents for climate change mitigation. Energy Research & Social Science, 27, 1-8. https://doi.org/10.1016/j.erss.2017.01.020
  • Rajan, S.C. (2006). Climate change dilemma: Technology, social change or both?: An examination of long-term transport policy choices in the United States. Energy Policy, 34(6), 664-679. https://doi.org/10.1016/j.enpol.2004.07.002
  • Seçilmiş, N. and Konu, A. (2021). Türkiye’de hava taşımacılığı altyapı yatırımlarının havacılık ekonomisi üzerindeki etkileri. D. Macit (Ed.), Havacılık ekonomisi teori, politika ve güncel araştırmalar içinde (s. 249-273). Ankara: Nobel Press.
  • Stanley, J.K., Hensher, D.A. and Loader, C. (2011). Road transport and climate change: Stepping off the greenhouse gas. Transportation Research Part A: Policy and Practice, 45(10), 1020-1030. https://doi.org/10.1016/j.tra.2009.04.005
  • Su, H.-N. and Moaniba, I.M. (2017). Does innovation respond to climate change? Empirical evidence from patents and greenhouse gas emissions. Technological Forecasting and Social Change, 122, 49–62. https://doi.org/10.1016/j.techfore.2017.04.017
  • Ülengin, F., Işık, M., Ekici, Ş.Ö., Özaydın, Ö., Kabak, Ö. and Topçu, Y.İ. (2018). Policy developments for the reduction of climate change impacts by the transportation sector. Transport Policy, 61, 36-50, https://doi.org/10.1016/j.tranpol.2017.09.008
  • UN. (2021). 2020 international trade statistics yearbook (United Nations ST/ESA/STAT/SER.G/69 (Vol.II)). Retrieved from https://comtradeapi.un.org/files/v1/app/publicationfiles/2020/VolII2020.pdf
  • World Bank. (2022). World development indicators [Database]. Retrieved from https://databank.worldbank.org/source/world-development-indicators
  • Wright, L. and Fulton, L. (2005). Climate change mitigation and transport in developing nations. Transport Reviews, 25(6), 691-7171464. https://doi.org/10.1080/01441640500360951

Taşımacılık Sektöründe İklim Değişikliğine Karşı Teknoloji Yönlü Mücadele: Ampirik Bir İnceleme

Year 2024, Volume: 9 Issue: 2, 323 - 335, 30.06.2024
https://doi.org/10.30784/epfad.1364140

Abstract

Ulaştırma sektörü, sera gazı emisyonlarının (GHG) en yüksek olduğu ve dolayısıyla küresel ısınma sorununun büyümesine neden olan en önemli sektörlerden biridir. Bu sorunun en etkili ve küresel çözümünün teknoloji odaklı mücadele olduğu düşünülmekte ve yeşil teknolojilerin geliştirilmesi küresel otoriteler tarafından teşvik edilmektedir. Bu çalışma, ulaştırma sektöründe küresel ısınmaya karşı teknoloji odaklı mücadelenin başarısını ölçmeyi amaçlamaktadır. Analiz için 12 OECD ülkesinin 1999-2017 yılları arasındaki ulaştırma kaynaklı sera gazı emisyonları, patent sayısı (ulaşımla ilgili iklim değişikliğini azaltma teknolojileri), ticari açıklık ve kişi başına düşen GSYİH verilerinden yararlanılmıştır. Bu çerçevede değişkenler arasındaki uzun ve kısa dönemli ilişkinin belirlenmesi amacıyla yatay kesit otoregresif dağıtılmış gecikme tahmincisi (cross‐sectionally augmented autoregressive distributed lag – CS ARDL) ve ek olarak Ortalama Grup (Mean Group MG), Artırılmış Ortalama Grup (Augmented Mean Group -AMG) ve Ortak İlişkili Etkiler Ortalama Grup Tahmin Edicileri (Common Correlated Effects-CCE) kullanılmıştır. Kullanılan tüm tahmin edicilerin bulgularına göre, patent sayıları ve ticari açıklığın sera gazı emisyonlarını etkilediğine dair herhangi bir kanıt bulunamamış, fakat GSYİH'nın sera gazı emisyonlarını olumlu yönde etkilediği tespit edilmiştir. Sonuç olarak, ulaştırma sektöründe iklim değişikliğine karşı teknoloji yönlü mücadelenin, ulaşım kaynaklı GHG emisyonlarını azaltmada tek başına yeterli olamadığı söylenebilir.

References

  • Ahmad, M., Jiang, P., Majeed, A., Umar, M., Khan, Z. and Muhammad, S. (2020). The dynamic impact of natural resources, technological innovations and economic growth on ecological footprint: An advanced panel data estimation. Resources Policy, 69, 101817. https://doi.org/10.1016/j.resourpol.2020.101817
  • Ahn, H. and Park, E. (2022). For sustainable development in the transportation sector: Determinants of acceptance of sustainable transportation using the innovation diffusion theory and technology acceptance model. Sustainable Development, 30(5), 1169-1183. https://doi.org/10.1002/sd.2309
  • Al Mamun, M., Sohag, K., Shahbaz, M. and Hammoudeh, S. (2018). Financial markets, innovations and cleaner energy production in OECD countries. Energy Economics, 72, 236-254. https://doi.org/10.1016/j.eneco.2018.04.011
  • Alam, I. and Quazi, R. (2003). Determinants of capital flight: An econometric case study of Bangladesh. International Review of Applied Economics, 17(1), 85-103. https://doi.org/10.1080/713673164
  • Álvarez-Herránz, A., Balsalobre, D., Cantos, J.M. and Shahbaz, M. (2017). Energy innovations-GHG emissions nexus: Fresh empirical evidence from OECD countries. Energy Policy, 101, 90-100. https://doi.org/10.1016/j.enpol.2016.11.030
  • Andrés, L. and Padilla, E. (2018). Driving factors of GHG emissions in the EU transport activity. Transport Policy, 61, 60-74. https://doi.org/10.1016/j.tranpol.2017.10.008
  • Andress, D., Nguyen, T.D. and Das, S. (2011). Reducing GHG emissions in the United States' transportation sector. Energy for Sustainable Development, 15(2), 117-136. https://doi.org/10.1016/j.esd.2011.03.002
  • Bakker, S., Zuidgeest, M., Coninck, H. and Huizenga, C. (2014). Transport, development and climate change mitigation: Towards an integrated approach. Transport Reviews, 34(3), 335–355. https://doi.org/10.1080/01441647.2014.903531
  • Caravella, S., Costantini, V. and Crespi, F. (2021). Mission-oriented policies and technological sovereignty: The case of climate mitigation technologies. Energies, 14(20), 6854. https://doi.org/10.3390/en14206854
  • Chapman, L. (2007). Transport and climate change: A review. Journal of Transport Geography, 15(5), 354-367. https://doi.org/10.1016/j.jtrangeo.2006.11.008
  • Chudik, A. and Pesaran, M.H. (2015). Common correlated effects estimation of heterogeneous dynamic panel data models with weakly exogenous regressors. Journal of Econometrics, 188(2), 393-420. https://doi.org/10.1016/j.jeconom.2015.03.007
  • Dechezleprêtre, A., Glachant, M. and Ménière, Y. (2013). What drives the international transfer of climate change mitigation technologies? Empirical evidence from patent data. Environmental and Resource Economics, 54, 161-178. https://doi.org/10.1007/s10640-012-9592-0
  • Dechezleprêtre, A., Martin, R. and Bassi, S. (2019). Climate change policy, innovation and growth. In R. Fouquet (Eds.), Handbook on green growth (pp. 217-239). UK: Edward Elgar Publishing.
  • Dedinec, A., Markovska, N., Taseska, V., Duic, N. and Kanevce, G. (2013). Assessment of climate change mitigation potential of the Macedonian transport sector. Energy, 57, 177-187. https://doi.org/10.1016/j.energy.2013.05.011
  • Eberhardt, M. and Bond, S. (2009). Cross-section dependence in nonstationary panel models: A novel estimator (MPRA Paper No. 17692). Retrieved from https://mpra.ub.uni-muenchen.de/17870/2/MPRA_paper_17870.pdf
  • EPO. (2022). Searching for patents. Retrieved from https://www.epo.org/searching-for-patents.html
  • Fan, F. and Lei, Y. (2016). Decomposition analysis of energy-related carbon emissions from the transportation sector in Beijing. Transportation Research Part D: Transport and Environment, 42, 135-145. https://doi.org/10.1016/j.trd.2015.11.001
  • Feng, C., Sun, L.X. and Xia, Y.S. (2020). Clarifying the “gains” and “losses” of transport climate mitigation in China from technology and efficiency perspectives. Journal of Cleaner Production, 263, 121545. https://doi.org/10.1016/j.jclepro.2020.121545
  • Fenley, C.A., Machado, W.V. and Fernandes, E. (2007). Air transport and sustainability: Lessons from Amazonas. Applied Geography, 27, 63-77. https://doi.org/10.1016/j.apgeog.2006.12.002
  • Ferreira, J.J.M., Fernandes, C.I. and Ferreira, F.A.F. (2020). Technology transfer, climate change mitigation, and environmental patent impact on sustainability and economic growth: A comparison of European countries. Technological Forecasting & Social Change, 150, 119770. https://doi.org/10.1016/j.techfore.2019.119770
  • Ghannouchi, I., Ouni, F. and Aloulou, F. (2023). Investigating the impact of transportation system and economic growth on carbon emissions: Application of GMM System for 33 european countries. Environmental Science and Pollution Research, 30(39), 90656-90674. https://doi.org/10.1007/s11356-023-28595-6
  • Hacıimamoğlu, T. (2023). Testing the environmental Phillips Curve hypothesis in MIKTA countries: CSARDL test approach. Ordu Üniversitesi Sosyal Bilimler Enstitüsü Sosyal Bilimler Araştırmaları Dergisi, 13(1), 301-316. https://doi.org/10.48146/odusobiad.1104588
  • Hussain, Z. (2022). Environmental and economic-oriented transport efficiency: The role of climate change mitigation technology. Environmental Science and Pollution Research, 29(19), 29165-29182. https://doi.org/10.1007/s11356-021-18392-4
  • IPCC. (1995). Climate change 1995: IPCC second assessment report (A Report of the Intergovermental Panel on Climate Change). Retrieved from https://digital.library.unt.edu/ark:/67531/metadc11834/m1/1/
  • IPCC. (1996). Technologies, policies and measures for mitigating climate change (IPCC Technical Paper I). Retrieved from https://www.ipcc.ch/site/assets/uploads/2018/03/paper-I-en.pdf
  • Johnstone, N., Haščič, I. and Popp, D. (2010). Renewable energy policies and technological innovation: Evidence based on patent counts. Environmental and Resource Economics, 45, 133–155. https://doi.org/10.1007/s10640-009-9309-1
  • Jordaan, S.M., Romo-Rabago, E., McLeary, R., Reidy, L., Nazari, J. and Herremans, I.M. (2017). The role of energy technology innovation in reducing greenhouse gas emissions: A case study of Canada. Renewable and Sustainable Energy Reviews, 78, 1397-1409. https://doi.org/10.1016/j.rser.2017.05.162
  • Karagöl, E., Erbaykal, E. and Ertuğrul, H.M. (2007). Economic growth and electricity consumption in Turkey: A bound test approach. Doğuş Üniversitesi Dergisi, 8(1), 72-80. Retrieved from https://dergipark.org.tr/en/pub/doujournal/
  • Kaypak, Ş. (2011). A sustainable environment for a sustainable development in the process of globalization. KMÜ Sosyal ve Ekonomik Araştırmalar Dergisi, 13(20), 19-33. Retrieved from https://dergipark.org.tr/en/pub/kmusekad/
  • Kılıç, S. (2012). An ecological approach to the economic dimension of sustainable development concept. İstanbul Üniversitesi Siyasal Bilgiler Fakültesi Dergisi, 47, 201-226. Retrieved from https://dergipark.org.tr/en/pub/iusiyasal
  • Longshurst, J., Gibbs, D.C., Raper, D.W. and Conlan, D.E. (1996). Towards sustainable airport development. The Environmentalist, 16, 197-202. https://doi.org/10.1007/BF01324760
  • Mazzarino, M. (2000). The economics of the greenhouse effect: Evaluating the climate change impact due to the transport sector in Italy. Energy Policy, 28(13), 957-966. https://doi.org/10.1016/S0301-4215(00)00078-1
  • Miotti, M., Supran, G.J., Kim, E.J. and Trancik, J.E. (2016). Personal vehicles evaluated against climate change mitigation targets. Environmental Science & Technology, 50(20), 10795-10804. https://doi.org/10.1021/acs.est.6b00177
  • Moreira, J.R. and Pacca, S.A. (2020). The climate change mitigation potential of sugarcane based technologies for automobiles; CO2 negative emissions in sight. Transportation Research Part D: Transport and Environment, 86, 102454. https://doi.org/10.1016/j.trd.2020.102454
  • Narayan, P.K. and Smyth, R. (2006). What determines migration flows from low‐income to high‐income countries? An empirical investigation of Fiji–Us migration 1972–2001. Contemporary Economic Policy, 24(2), 332-342. https://doi.org/10.1093/cep/byj019
  • OECD. (2023). OECD data [Database]. Retrieved from https://data.oecd.org/
  • Our World in Data. (2022). Trade openness [Database]. Retrieved from https://ourworldindata.org/
  • Panepinto, D., Riggio, V.A. and Zanetti, M. (2021). Analysis of the emergent climate change mitigation technologies. International Journal of Environmental Research and Public Health, 18(13), 6767. https://doi.org/10.3390/ijerph18136767
  • Pasimeni, F., Fiorini, A. and Georgakaki, A. (2021). International landscape of the inventive activity on climate change mitigation technologies. A patent analysis. Energy Strategy Reviews, 36, 100677. https://doi.org/10.1016/j.esr.2021.100677
  • Pesaran, M.H. (2006). Estimation and inference in large heterogeneous panels with a multifactor error structure. Econometrica, 74(4), 967-1012. https://doi.org/10.1111/j.1468-0262.2006 .00692.x
  • Pesaran, M.H. (2007). A simple panel unit root test in the presence of cross‐section dependence. Journal of Applied Econometrics, 22(2), 265-312, https://doi.org/10.1002/jae.951
  • Pesaran, M.H. (2015). Testing weak cross-sectional dependence in large panels. Econometric Reviews, 34(6-10), 1089-1117. https://doi.org/10.1080/07474938.2014.956623
  • Pesaran, M.H. and Smith, R. (1995). Estimating long-run relationships from dynamic heterogeneous panels. Journal of econometrics, 68(1), 79-113. https://doi.org/10.1016/0304-4076(94)01644-F
  • Pesaran, M.H. and Yamagata, T. (2008). Testing slope homogeneity in large panels. Journal of Econometrics, 142(1), 50-93. https://doi.org/10.1016/j.jeconom.2007.05.010
  • Princiotta, F.T. (2021). The climate mitigation challenge - Where do we stand? Journal of the Air & Waste Management Association, 71(10), 1234-1250. https://doi.org/10.1080/10962247.2021.1948458
  • Raiser, K., Naims, H. and Bruhn, T. (2017). Corporatization of the climate? Innovation, intellectual property rights, and patents for climate change mitigation. Energy Research & Social Science, 27, 1-8. https://doi.org/10.1016/j.erss.2017.01.020
  • Rajan, S.C. (2006). Climate change dilemma: Technology, social change or both?: An examination of long-term transport policy choices in the United States. Energy Policy, 34(6), 664-679. https://doi.org/10.1016/j.enpol.2004.07.002
  • Seçilmiş, N. and Konu, A. (2021). Türkiye’de hava taşımacılığı altyapı yatırımlarının havacılık ekonomisi üzerindeki etkileri. D. Macit (Ed.), Havacılık ekonomisi teori, politika ve güncel araştırmalar içinde (s. 249-273). Ankara: Nobel Press.
  • Stanley, J.K., Hensher, D.A. and Loader, C. (2011). Road transport and climate change: Stepping off the greenhouse gas. Transportation Research Part A: Policy and Practice, 45(10), 1020-1030. https://doi.org/10.1016/j.tra.2009.04.005
  • Su, H.-N. and Moaniba, I.M. (2017). Does innovation respond to climate change? Empirical evidence from patents and greenhouse gas emissions. Technological Forecasting and Social Change, 122, 49–62. https://doi.org/10.1016/j.techfore.2017.04.017
  • Ülengin, F., Işık, M., Ekici, Ş.Ö., Özaydın, Ö., Kabak, Ö. and Topçu, Y.İ. (2018). Policy developments for the reduction of climate change impacts by the transportation sector. Transport Policy, 61, 36-50, https://doi.org/10.1016/j.tranpol.2017.09.008
  • UN. (2021). 2020 international trade statistics yearbook (United Nations ST/ESA/STAT/SER.G/69 (Vol.II)). Retrieved from https://comtradeapi.un.org/files/v1/app/publicationfiles/2020/VolII2020.pdf
  • World Bank. (2022). World development indicators [Database]. Retrieved from https://databank.worldbank.org/source/world-development-indicators
  • Wright, L. and Fulton, L. (2005). Climate change mitigation and transport in developing nations. Transport Reviews, 25(6), 691-7171464. https://doi.org/10.1080/01441640500360951
There are 54 citations in total.

Details

Primary Language English
Subjects Development Economics - Macro
Journal Section Makaleler
Authors

Nisa Seçilmiş 0000-0003-2487-2105

Pınar Gümüş Akar 0000-0003-2793-8528

Publication Date June 30, 2024
Acceptance Date May 20, 2024
Published in Issue Year 2024 Volume: 9 Issue: 2

Cite

APA Seçilmiş, N., & Gümüş Akar, P. (2024). Technology Oriented Struggle Against Climate Change in Transportation Sector: An Empirical Investigation. Ekonomi Politika Ve Finans Araştırmaları Dergisi, 9(2), 323-335. https://doi.org/10.30784/epfad.1364140