Research Article
BibTex RIS Cite

On the Solution of the Generalized Symmetric Woods-Saxon Potential in the Dirac Equation

Year 2018, Issue: 2, 435 - 438, 19.08.2018

Abstract

In this work, we present a solution to the Dirac
equation that is coupled with vector and scalar generalized symmetric
Woods-Saxon potential energy in one plus one space-time.  The chosen potential energy has a flexible
structure to examine four different physical problems. The potential energy can
be a barrier or well depend on being attractive or repulsive. Furthermore, the
included surface effects can be attractive or repulsive. Therefore, in one
class a potential barrier occurs with a pocket or an extra barrier nearby the
effective radius. Similar effects occur in the potential well whether the
surface effects are repulsive or attractive. Here we use the usual
two-component approach. We obtain the solutions in hypergeometric function
form.

References

  • Bayrak, O. & Aciksoz, E.. (2015). Corrected analytical solution of the generalized Woods-Saxon potential for arbitrary ℓ states. Phys. Scr., 90, 015302. Brandan, M. E. & Satchler, G. R.. (1997). The interaction between light heavy-ions and what it tells us, Phys. Rep., 285, 143–243. Chabab, M., El Batoul, A., Hassanabadi, H., Oulne, M., & Zare, S.. (2016). Scattering states of Dirac particle equation with position-dependent mass under the cusp potential. Eur. Phys. J. Plus, 131(11). Costa, L.S., Prudente, F. V., Acioli, P. H., Soares Neto, J. J. & Vianna, J. D. M.. (1999). A study of confned quantum systems using the Woods-Saxon potential, J. Phys. B: At., Mol. Opt. Phys., 32, 2461–2470. Dirac, P. A. M.. (1928). The quantum theory of the electron, Proc. Roy. Soc. A117, 610-628. Flügge, S.. (1974). Pratical Quantum Mechanics. Berlin: Spinger. Hosseinpour, M., Andrade, F.M., Silva, E.O., & Hassanabadi, H. (2017). Scattering and bound states for the Hulthén potential in a cosmic string background. Eur. Phys. J. C, 77: 270. Klein, O.. (1926). Quantentheorie und fünfdimensionale Relativitätstheorie, Z. Phys., 37, 895-906. Lee, D. -H.. (2009). Surface states of topological insulators: The dirac fermion in curved two-dimensional spaces. Phys. Rev. Lett., 103, 196804. Lütfüoğlu, B. C., Akdeniz, F.& Bayrak, O.. (2016). Scattering, bound, and quasi-bound states of the generalized symmetric Woods-Saxon potential, J. Math. Phys., 57, 032103. Lütfüoğlu, B. C.. (2018). Comparative Effect of an Addition of a Surface Term to Woods-Saxon Potential on Thermodynamics of a Nucleon, Commun. Theor. Phys., 69, 23-27. Lütfüoğlu, B. C.. (2018). Surface interaction effects to a Klein-Gordon particle embedded in a Woods-Saxon potential well in terms of thermodynamic functions, Can. J. Phys., 96, 843-850. Lütfüoğlu, B. C, Lipovsky, J. & Kriz, J..(2018) Scattering of Klein-Gordon particles in the background of mixed scalar-vector generalized symmetric Woods-Saxon potential, Eur. Phys. J. Plus, 133, 17. Lütfüoğlu, B. C.. (2018). An investigation of the bound-state solutions of the Klein-Gordon equation for the generalized Woods-Saxon potential in spin symmetry and pseudo-spin symmetry limits, Eur. Phys. J. Plus, 133, 309. Rojas, C. & Villalba, V. M. (2005). Scattering of a Klein-Gordon particle by a Woods-Saxon potential, Phys. Rev. A, 71, 052101. Satchler, G. R.. (1983). Direct Nuclear Reaction. Oxford: Oxford University Press. Woods, R. D. & Saxon, D. S.. (1954). Diffuse Surface Optical Model for Nucleon-Nuclei Scattering, Phys. Rev., 95, 577-578. Zaichenko, A. K.& Ol’khovskii, V. S.. (1976) Analytic solutions of the problem of scattering by potentials of the Eckart class, Theor. Math. Phys., 27, 475–477.

Year 2018, Issue: 2, 435 - 438, 19.08.2018

Abstract

References

  • Bayrak, O. & Aciksoz, E.. (2015). Corrected analytical solution of the generalized Woods-Saxon potential for arbitrary ℓ states. Phys. Scr., 90, 015302. Brandan, M. E. & Satchler, G. R.. (1997). The interaction between light heavy-ions and what it tells us, Phys. Rep., 285, 143–243. Chabab, M., El Batoul, A., Hassanabadi, H., Oulne, M., & Zare, S.. (2016). Scattering states of Dirac particle equation with position-dependent mass under the cusp potential. Eur. Phys. J. Plus, 131(11). Costa, L.S., Prudente, F. V., Acioli, P. H., Soares Neto, J. J. & Vianna, J. D. M.. (1999). A study of confned quantum systems using the Woods-Saxon potential, J. Phys. B: At., Mol. Opt. Phys., 32, 2461–2470. Dirac, P. A. M.. (1928). The quantum theory of the electron, Proc. Roy. Soc. A117, 610-628. Flügge, S.. (1974). Pratical Quantum Mechanics. Berlin: Spinger. Hosseinpour, M., Andrade, F.M., Silva, E.O., & Hassanabadi, H. (2017). Scattering and bound states for the Hulthén potential in a cosmic string background. Eur. Phys. J. C, 77: 270. Klein, O.. (1926). Quantentheorie und fünfdimensionale Relativitätstheorie, Z. Phys., 37, 895-906. Lee, D. -H.. (2009). Surface states of topological insulators: The dirac fermion in curved two-dimensional spaces. Phys. Rev. Lett., 103, 196804. Lütfüoğlu, B. C., Akdeniz, F.& Bayrak, O.. (2016). Scattering, bound, and quasi-bound states of the generalized symmetric Woods-Saxon potential, J. Math. Phys., 57, 032103. Lütfüoğlu, B. C.. (2018). Comparative Effect of an Addition of a Surface Term to Woods-Saxon Potential on Thermodynamics of a Nucleon, Commun. Theor. Phys., 69, 23-27. Lütfüoğlu, B. C.. (2018). Surface interaction effects to a Klein-Gordon particle embedded in a Woods-Saxon potential well in terms of thermodynamic functions, Can. J. Phys., 96, 843-850. Lütfüoğlu, B. C, Lipovsky, J. & Kriz, J..(2018) Scattering of Klein-Gordon particles in the background of mixed scalar-vector generalized symmetric Woods-Saxon potential, Eur. Phys. J. Plus, 133, 17. Lütfüoğlu, B. C.. (2018). An investigation of the bound-state solutions of the Klein-Gordon equation for the generalized Woods-Saxon potential in spin symmetry and pseudo-spin symmetry limits, Eur. Phys. J. Plus, 133, 309. Rojas, C. & Villalba, V. M. (2005). Scattering of a Klein-Gordon particle by a Woods-Saxon potential, Phys. Rev. A, 71, 052101. Satchler, G. R.. (1983). Direct Nuclear Reaction. Oxford: Oxford University Press. Woods, R. D. & Saxon, D. S.. (1954). Diffuse Surface Optical Model for Nucleon-Nuclei Scattering, Phys. Rev., 95, 577-578. Zaichenko, A. K.& Ol’khovskii, V. S.. (1976) Analytic solutions of the problem of scattering by potentials of the Eckart class, Theor. Math. Phys., 27, 475–477.
There are 1 citations in total.

Details

Primary Language English
Subjects Engineering
Journal Section Research Article
Authors

Bekir Can Lutfuoglu This is me

Publication Date August 19, 2018
Published in Issue Year 2018 Issue: 2

Cite

APA Lutfuoglu, B. C. (2018). On the Solution of the Generalized Symmetric Woods-Saxon Potential in the Dirac Equation. The Eurasia Proceedings of Science Technology Engineering and Mathematics(2), 435-438.