Conference Paper
BibTex RIS Cite

Effects of Deep Cryogenic Treatment on the Mechanical Properties of Medium Carbon Spring Steels

Year 2020, Volume: 11, 48 - 52, 31.12.2020

Abstract

The cryogenic treatment is a method frequently used in the development of the wear resistance of alloy steels due to the increase in their hardness driven by the mechanisms such as the conversion of retained austenite to martensite and the formation of secondary carbides. In recent studies, it has been reported that besides the hardening mechanisms, the cryogenic treatment can also improve the mechanical properties of the alloys by reducing the residual stresses and modifying the microstructure. This research aims to investigate the impact of deep cryogenic process (-196°C) on the microstructures of medium carbon spring steels contain various alloying elements. The conventional heat treatment (CHT) and the deep cryogenic treatment (DCT) procedures were applied to the spring steels which have various alloying elements. Hardness, tensile and notch toughness tests were performed to determine the mechanical properties. Consequently, the aim is to determine the applicability of the cryogenic treatment in the improvement of the mechanical properties of medium carbon spring steels.

References

  • Baldissera, P., & Delprete, C. (2008). Deep cryogenic treatment: A bibliographic review. The Open Mechanical Engineering Journal, 2(1), 1–11. https://doi.org/10.2174/1874155X00802010001
  • Bensely, A., Venkatesh, S., Mohan Lal, D., Nagarajan, G., Rajadurai, A., & Junik, K. (2008). Effect of cryogenic treatment on distribution of residual stress in case carburized En 353 steel. Materials Science and Engineering A, 479(1–2), 229–235. https://doi.org/10.1016/j.msea.2007.07.035
  • Das, D., Sarkar, R., Dutta, A. K., & Ray, K. K. (2010). Influence of sub-zero treatments on fracture toughness of AISI D2 steel. Materials Science and Engineering A, 528(2), 589–603. https://doi.org/10.1016/j.msea.2010.09.057
  • Ghasemi-Nanesa, H., & Jahazi, M. (2014). Simultaneous enhancement of strength and ductility in cryogenically treated AISI D2 tool steel. Materials Science and Engineering A, 598, 413–419. https://doi.org/10.1016/j.msea.2014.01.065
  • Michaud, P., Delagnes, D., Lamesle, P., Mathon, M. H., & Levaillant, C. (2007). The effect of the addition of alloying elements on carbide precipitation and mechanical properties in 5% chromium martensitic steels. Acta Materialia, 55(14), 4877–4889. https://doi.org/10.1016/j.actamat.2007.05.004
  • Myeong, T., & Yamabayashi, Y. (1997). A new life extension method for high cycle fatigue using micro-martensitic transformation in an austenitic stainless steel. Journal of Fatigue, 19(1), 69–73. https://doi.org/10.1016/S0142-1123(97)00060-1
  • Özden, R., & Anik, M. (2020). Enhancement of the mechanical properties of EN52CrMoV4 spring steel by deep cryogenic treatment Verbesserung der mechanischen Eigenschaften von EN52CrMoV4 Federstahl durch Tieftemperaturbehandlung. Materialwissenschaft Und Werkstofftechnik, 51, 422–431. https://doi.org/10.1002/mawe.201900122
  • Preciado, M., & Pellizzari, M. (2014). Influence of deep cryogenic treatment on the thermal decomposition of Fe-C martensite. Journal of Materials Science, 49(23), 8183–8191. https://doi.org/10.1007/s10853-014-8527-2
  • Senthilkumar, D., Rajendran, I., Pellizzari, M., & Siiriainen, J. (2011). Influence of shallow and deep cryogenic treatment on the residual state of stress of 4140 steel. Journal of Materials Processing Technology, 211(3), 396–401. https://doi.org/10.1016/j.jmatprotec.2010.10.018
  • Vahdat, S. E., Nategh, S., & Mirdamadi, S. (2013). Microstructure and tensile properties of 45WCrV7 tool steel after deep cryogenic treatment. Materials Science & Engineering A, 585, 444–454. https://doi.org/10.1016/j.msea.2013.07.057
  • Villa, M., Pantleon, K., & Somers, M. A. J. (2014). Evolution of compressive strains in retained austenite during sub-zero Celsius martensite formation and tempering. Acta Materialia, 65, 383–392. https://doi.org/10.1016/j.actamat.2013.11.007
  • Zhirafar, S., Rezaeian, A., & Pugh, M. (2007). Effect of cryogenic treatment on the mechanical properties of 4340 steel. Journal of Materials Processing Technology, 186(1–3), 298–303. https://doi.org/10.1016/j.jmatprotec.2006.12.046
Year 2020, Volume: 11, 48 - 52, 31.12.2020

Abstract

References

  • Baldissera, P., & Delprete, C. (2008). Deep cryogenic treatment: A bibliographic review. The Open Mechanical Engineering Journal, 2(1), 1–11. https://doi.org/10.2174/1874155X00802010001
  • Bensely, A., Venkatesh, S., Mohan Lal, D., Nagarajan, G., Rajadurai, A., & Junik, K. (2008). Effect of cryogenic treatment on distribution of residual stress in case carburized En 353 steel. Materials Science and Engineering A, 479(1–2), 229–235. https://doi.org/10.1016/j.msea.2007.07.035
  • Das, D., Sarkar, R., Dutta, A. K., & Ray, K. K. (2010). Influence of sub-zero treatments on fracture toughness of AISI D2 steel. Materials Science and Engineering A, 528(2), 589–603. https://doi.org/10.1016/j.msea.2010.09.057
  • Ghasemi-Nanesa, H., & Jahazi, M. (2014). Simultaneous enhancement of strength and ductility in cryogenically treated AISI D2 tool steel. Materials Science and Engineering A, 598, 413–419. https://doi.org/10.1016/j.msea.2014.01.065
  • Michaud, P., Delagnes, D., Lamesle, P., Mathon, M. H., & Levaillant, C. (2007). The effect of the addition of alloying elements on carbide precipitation and mechanical properties in 5% chromium martensitic steels. Acta Materialia, 55(14), 4877–4889. https://doi.org/10.1016/j.actamat.2007.05.004
  • Myeong, T., & Yamabayashi, Y. (1997). A new life extension method for high cycle fatigue using micro-martensitic transformation in an austenitic stainless steel. Journal of Fatigue, 19(1), 69–73. https://doi.org/10.1016/S0142-1123(97)00060-1
  • Özden, R., & Anik, M. (2020). Enhancement of the mechanical properties of EN52CrMoV4 spring steel by deep cryogenic treatment Verbesserung der mechanischen Eigenschaften von EN52CrMoV4 Federstahl durch Tieftemperaturbehandlung. Materialwissenschaft Und Werkstofftechnik, 51, 422–431. https://doi.org/10.1002/mawe.201900122
  • Preciado, M., & Pellizzari, M. (2014). Influence of deep cryogenic treatment on the thermal decomposition of Fe-C martensite. Journal of Materials Science, 49(23), 8183–8191. https://doi.org/10.1007/s10853-014-8527-2
  • Senthilkumar, D., Rajendran, I., Pellizzari, M., & Siiriainen, J. (2011). Influence of shallow and deep cryogenic treatment on the residual state of stress of 4140 steel. Journal of Materials Processing Technology, 211(3), 396–401. https://doi.org/10.1016/j.jmatprotec.2010.10.018
  • Vahdat, S. E., Nategh, S., & Mirdamadi, S. (2013). Microstructure and tensile properties of 45WCrV7 tool steel after deep cryogenic treatment. Materials Science & Engineering A, 585, 444–454. https://doi.org/10.1016/j.msea.2013.07.057
  • Villa, M., Pantleon, K., & Somers, M. A. J. (2014). Evolution of compressive strains in retained austenite during sub-zero Celsius martensite formation and tempering. Acta Materialia, 65, 383–392. https://doi.org/10.1016/j.actamat.2013.11.007
  • Zhirafar, S., Rezaeian, A., & Pugh, M. (2007). Effect of cryogenic treatment on the mechanical properties of 4340 steel. Journal of Materials Processing Technology, 186(1–3), 298–303. https://doi.org/10.1016/j.jmatprotec.2006.12.046
There are 12 citations in total.

Details

Primary Language English
Subjects Engineering
Journal Section Articles
Authors

Resat Can Ozden

Ersu Lokcu

Mustafa Anık

Publication Date December 31, 2020
Published in Issue Year 2020Volume: 11

Cite

APA Ozden, R. C., Lokcu, E., & Anık, M. (2020). Effects of Deep Cryogenic Treatment on the Mechanical Properties of Medium Carbon Spring Steels. The Eurasia Proceedings of Science Technology Engineering and Mathematics, 11, 48-52.