Research Article
BibTex RIS Cite
Year 2017, Issue: 3, 58 - 63, 01.05.2017

Abstract

References

  • [1] S. Joo, J. Yoon, J. Kim, M. Lee, Y. Yoon, NOX emissions characteristics of the partially premixed Combustion of H2/CO/CH4 syngas using artificial neural networks, Appl. Therm. Eng. 80 (2015) 436-444. [2] A. E. E. Khalil, V. K. Arghode, A. K. Gupta, S. C. Lee, Low calorific value fueled distributed combustion with swirl for gas turbine applications, Appl. Energy 98 (2012) 69-78. [3] F. Liu, Y. Ai, W. Kong, Effect of hydrogen and helium addition to fuel on soot formation in an axisymmetric coflow laminar methane/air diffusion flame, Int. J. Hydrogen Energy 39 (2014) 3936-3946. [4] P. Kutne, I. Boxx, M. Stöhr, W. Meier, Experimental analysis of the combustion behaviors of low calorific syngas mixtures in a gas turbine model combustor, Third European Combustion Meeting ECM (2007), 1-6. [5] C. Ghenai, Combustion of syngas fuel in gas turbine can combustor, Advances in Mechanical Eng. Volume 2010, Article ID 342357, doi: 10.1155/2010/342357. [6] M. Ilbas, The effect of thermal radiation and radiation models on hydrogen-hydrocarbon combustion modelling, Int. J. Hydrogen Energy 30 (2005) 1113-1126. [7] M. A. Habib, E. M. A. Mokheimer, S. Y. Sanusi, M. A. Nemitallah, Numerical investigations of combustion and emissions of syngas as compared to methane in a 200 MW package boiler, Energy Convers. Manag. 83 (2014) 296-305. [8] J. J. J. Louis, J. B. W. Kok, S. A. Klein, Modeling and measurements of a 16-kW turbulent nonadiabatic syngas diffusion flame in a cooled cylindrical combustion chamber, Combustion and Flame 125 (2001) 1012-1031. [9] K. K. J. Ranga Dinesh, X. Jiang, M. P. Kirkpatrick, W. Malalasekera, Combustion characteristics of H2/N2 and H2/CO syngas nonpremixed flames, Int. J. Hydrogen Energy 37 (2012) 16186-16200. [10] M. C. Lee, S. B. Seo, J. H. Chung, S. M. Kim, Y. J. Joo, D. H. Ahn, Gas turbine combustion performance test of hydrogen and carbon monoxide synthetic gas, FUEL 89 (2010) 1485-1491. [11] M. C. Lee, S. B. Seo, J. Yoon, M. Kim, Y. Yoon, Experimental study on the effect of N2, CO2, and steam dilution on the combustion performance of H2 and CO synthetic gas in an industrial gas turbine, FUEL 102 (2012) 431-438. [12] N. Syred, M. Abdulsada, A. Griffiths, T. O’Doherty, P. Bowen, The effect of hydrogen containing fuel blends upon flashback in swirl burners, Appl. Energy 89 (2012) 106-110. [13] I. Yilmaz, M. Ilbas, An experimental study on hydrogen-methane mixtured fuels, Int. Common. Heat Mass Transf. 35 (2008) 178-187. [14] L. Ziani, A. Chaker, K. Chetehouna, A. Malek, B. Mahmah, Numerical simulations of nonpremixed turbulent combustion of CH4-H2 mixtures using the PDF approach, Int. J. Hydrogen Energy 38 (2013) 8597-8603. [15] T. Hasegawa, M. Sato, T. Nakata, A study of combustion characteristics of gasified coal fuel, J. Eng. Gas Turbines Power 123 (2000) 22-32. [16] S. Dattarajan, R. Kaluri, G. Sridhar, Development of a combustor to burn raw producer gas, Fuel Processing Techn. 126 (2014) 76-87. [17] M. C. Lee, J. Yoon, S. Joo, Y. Yoon, Gas turbine combustion characteristics of H2/CO synthetic gas for coal integrated gasification combined cycle, Int. J. Hydrogen Energy 40 (2015) 11032-11045. [18] M. İlbaş, S. Karyeyen, A numerical study on combustion behaviors of hydrogen-enriched low calorific value coal gases, Int. J. Hydrogen Energy, 40 (2015) 15218-15226. [19] M. İlbaş, S. Karyeyen, Modelling of combustion performances and emission characteristics of coal gases in a model gas turbine combustor, Int. J. Energy Res. 38 (2014) 1171-1180. [20] T. C. Lieuwen, V. Yang, R. Yetter, Synthesis Gas Combustion Fundamentals and Applications, Taylor & Francis Group, Boca Raton, USA, 2010.

The Use of Coal Gases as an Alternative Fuel for Energy Supply

Year 2017, Issue: 3, 58 - 63, 01.05.2017

Abstract

Coal gasification is a process to produce syngas fuels. Syngas is a mixture mainly consisting of carbon monoxide (CO), hydrogen (H2), carbon dioxide (CO2), methane (CH4) and water vapor (H2O). Historically, coal was gasified using early technology to produce coal gas (also known as “town gas”), which is a combustible gas traditionally used for municipal lighting and heating before the advent of industrial-scale production of natural gas.

Natural gas is replaced by synthetic fuels, which are generally produced by gasification process, due to depletion of fossil fuels including natural gas resources. If synthetic fuel is produced by an air-blown gasification process, it is called as low calorific value syngas and may be used mostly in IGCC (Integrated Gasification Combined Cycle). Air is directly blown over the coal in a gasification reactor resulting in the production of the syngas that is composed chiefly of high amounts of nitrogen and carbon monoxide as well as a smaller amount of hydrogen as a combustible gas.

Alternatively, coal-derived syngas can also be converted into transportation fuels such as gasoline and diesel through additional treatment via the Fischer-Tropsch process or into methanol which itself can be used as transportation fuel or fuel additive, or which can be converted into gasoline by the methanol to gasoline process.

References

  • [1] S. Joo, J. Yoon, J. Kim, M. Lee, Y. Yoon, NOX emissions characteristics of the partially premixed Combustion of H2/CO/CH4 syngas using artificial neural networks, Appl. Therm. Eng. 80 (2015) 436-444. [2] A. E. E. Khalil, V. K. Arghode, A. K. Gupta, S. C. Lee, Low calorific value fueled distributed combustion with swirl for gas turbine applications, Appl. Energy 98 (2012) 69-78. [3] F. Liu, Y. Ai, W. Kong, Effect of hydrogen and helium addition to fuel on soot formation in an axisymmetric coflow laminar methane/air diffusion flame, Int. J. Hydrogen Energy 39 (2014) 3936-3946. [4] P. Kutne, I. Boxx, M. Stöhr, W. Meier, Experimental analysis of the combustion behaviors of low calorific syngas mixtures in a gas turbine model combustor, Third European Combustion Meeting ECM (2007), 1-6. [5] C. Ghenai, Combustion of syngas fuel in gas turbine can combustor, Advances in Mechanical Eng. Volume 2010, Article ID 342357, doi: 10.1155/2010/342357. [6] M. Ilbas, The effect of thermal radiation and radiation models on hydrogen-hydrocarbon combustion modelling, Int. J. Hydrogen Energy 30 (2005) 1113-1126. [7] M. A. Habib, E. M. A. Mokheimer, S. Y. Sanusi, M. A. Nemitallah, Numerical investigations of combustion and emissions of syngas as compared to methane in a 200 MW package boiler, Energy Convers. Manag. 83 (2014) 296-305. [8] J. J. J. Louis, J. B. W. Kok, S. A. Klein, Modeling and measurements of a 16-kW turbulent nonadiabatic syngas diffusion flame in a cooled cylindrical combustion chamber, Combustion and Flame 125 (2001) 1012-1031. [9] K. K. J. Ranga Dinesh, X. Jiang, M. P. Kirkpatrick, W. Malalasekera, Combustion characteristics of H2/N2 and H2/CO syngas nonpremixed flames, Int. J. Hydrogen Energy 37 (2012) 16186-16200. [10] M. C. Lee, S. B. Seo, J. H. Chung, S. M. Kim, Y. J. Joo, D. H. Ahn, Gas turbine combustion performance test of hydrogen and carbon monoxide synthetic gas, FUEL 89 (2010) 1485-1491. [11] M. C. Lee, S. B. Seo, J. Yoon, M. Kim, Y. Yoon, Experimental study on the effect of N2, CO2, and steam dilution on the combustion performance of H2 and CO synthetic gas in an industrial gas turbine, FUEL 102 (2012) 431-438. [12] N. Syred, M. Abdulsada, A. Griffiths, T. O’Doherty, P. Bowen, The effect of hydrogen containing fuel blends upon flashback in swirl burners, Appl. Energy 89 (2012) 106-110. [13] I. Yilmaz, M. Ilbas, An experimental study on hydrogen-methane mixtured fuels, Int. Common. Heat Mass Transf. 35 (2008) 178-187. [14] L. Ziani, A. Chaker, K. Chetehouna, A. Malek, B. Mahmah, Numerical simulations of nonpremixed turbulent combustion of CH4-H2 mixtures using the PDF approach, Int. J. Hydrogen Energy 38 (2013) 8597-8603. [15] T. Hasegawa, M. Sato, T. Nakata, A study of combustion characteristics of gasified coal fuel, J. Eng. Gas Turbines Power 123 (2000) 22-32. [16] S. Dattarajan, R. Kaluri, G. Sridhar, Development of a combustor to burn raw producer gas, Fuel Processing Techn. 126 (2014) 76-87. [17] M. C. Lee, J. Yoon, S. Joo, Y. Yoon, Gas turbine combustion characteristics of H2/CO synthetic gas for coal integrated gasification combined cycle, Int. J. Hydrogen Energy 40 (2015) 11032-11045. [18] M. İlbaş, S. Karyeyen, A numerical study on combustion behaviors of hydrogen-enriched low calorific value coal gases, Int. J. Hydrogen Energy, 40 (2015) 15218-15226. [19] M. İlbaş, S. Karyeyen, Modelling of combustion performances and emission characteristics of coal gases in a model gas turbine combustor, Int. J. Energy Res. 38 (2014) 1171-1180. [20] T. C. Lieuwen, V. Yang, R. Yetter, Synthesis Gas Combustion Fundamentals and Applications, Taylor & Francis Group, Boca Raton, USA, 2010.
There are 1 citations in total.

Details

Journal Section Articles
Authors

Mustafa İlbaş This is me

Publication Date May 1, 2017
Published in Issue Year 2017 Issue: 3

Cite

APA İlbaş, M. (2017). The Use of Coal Gases as an Alternative Fuel for Energy Supply. Energy Policy Turkey(3), 58-63.
AMA İlbaş M. The Use of Coal Gases as an Alternative Fuel for Energy Supply. Energy Policy Turkey. May 2017;(3):58-63.
Chicago İlbaş, Mustafa. “The Use of Coal Gases As an Alternative Fuel for Energy Supply”. Energy Policy Turkey, no. 3 (May 2017): 58-63.
EndNote İlbaş M (May 1, 2017) The Use of Coal Gases as an Alternative Fuel for Energy Supply. Energy Policy Turkey 3 58–63.
IEEE M. İlbaş, “The Use of Coal Gases as an Alternative Fuel for Energy Supply”, Energy Policy Turkey, no. 3, pp. 58–63, May 2017.
ISNAD İlbaş, Mustafa. “The Use of Coal Gases As an Alternative Fuel for Energy Supply”. Energy Policy Turkey 3 (May 2017), 58-63.
JAMA İlbaş M. The Use of Coal Gases as an Alternative Fuel for Energy Supply. Energy Policy Turkey. 2017;:58–63.
MLA İlbaş, Mustafa. “The Use of Coal Gases As an Alternative Fuel for Energy Supply”. Energy Policy Turkey, no. 3, 2017, pp. 58-63.
Vancouver İlbaş M. The Use of Coal Gases as an Alternative Fuel for Energy Supply. Energy Policy Turkey. 2017(3):58-63.

Energy Policy Turkey is a Trade Mark of TESPAM