Research Article
BibTex RIS Cite

Çeşitli Hayvansal Klinik Örneklerden İzole Edilen Staphylococcus aureus Suşlarında Slaym Pozitifliği ve Antibiyotik Direnci

Year 2014, Volume: 11 Issue: 3, 163 - 168, 01.12.2014

Abstract

Bu çalışmada, inek sütü, inek uterus sıvabı, köpek kulak sıvabı, köpek deri sıvabı ve tavuk sinoviyal sıvı örneklerinden

izole edilen toplam 50 Staphylococcus aureus suşu slaym faktör üretimi ve antibiyotik direnci yönünden incelendi.

Suşların slaym üretimi Congo red agar ve standart tüp yöntemleri kullanılarak belirlendi. Elli S. aureus suşunun 21’i

(%42) Congo red agarda, 18’i (%36) standart tüp yöntemi ile slaym pozitif olarak belirlendi. İki farklı yöntem arasında

istatistiksel olarak önemli bir farklılık bulunmadı (p>0.05). İzolatların antibiyotik dirençlerinin belirlenmesinde standart Etest

yöntemi kullanıldı. İzolatlar arasında en yüksek direnç oranı penisilin G’ye (%20) karşı iken, bunu sefalotin (%16),

oksasilin (%16) ve tetrasikline (%14) karşı direnç oranları izledi. Test edilen izolatlardan sadece biri (%2) enrofloksasine

karşı dirençliydi. Eritromisin, trimetoprim/sulfametoksazol, rifampin ve gentamisine karşı ise direnç tespit edilemedi.

Slaym pozitif ve negatif suşların antibiyotik dirençleri karşılaştırıldığında, slaym pozitif suşlarda penisilin G, sefalotin ve

oksasiline karşı direnç önemli oranda yüksekti (p<0.05).

References

  • 1. Aguilar B, Amorena B, Iturralde M. Effect of slime on adherence of Staphylococcus aureus isolated from bovine and ovine mastitis. Vet Microbiol 2001; 78(2): 183-91.
  • 2. Amorena B, Gracia E, Monzon M, Leiva J, Oteiza C, Perez M, Alabart JL, Hernandez-Yago J. Antibiotic susceptibility assay for Staphylococcus aureus in biofilms developed in vitro. J Antimicrob Chemother 1999; 44(1): 43-55.
  • 3. Archer NK, Mazaitis MJ, Costerton JW, Leid JG, Powers ME, Shirtliff ME. Staphylococcus aureus biofilms. Properties, regulation and roles in human disease. Virulence 2011; 2(5): 445-59.
  • 4. Arciola CR, Baldassarri L, Montanaro L. Presence of icaA and icaD genes and slime production in a collection of staphylococcal strains from catheter-associated infections. J Clin Microbiol 2001; 39(6): 2151-6.
  • 5. Arslan S, Özkardeş F. Slime production and antibiotic susceptibility in staphylococci isolated from clinical samples. Mem Inst Oswaldo Cruz 2007; 102(1): 29-33.
  • 6. Barrio B, Vangroenweghe F, Dosogne H, Burvenich C. Decreased neutrophil bactericidal activity during phagocytosis of a slime-producing Staphylococcus aureus strain. Vet Res 2000; 31(6): 603-9.
  • 7. Baselga R, Albizu I, de la Cruz M, Del Cacho E, Barberan M, Amorena B. Phase variation of slime production in Staphylococcus aureus: implications in colonization and virulence. Infect Immun 1993; 61(11): 4857-62.
  • 8. Boles BR, Horswill AR. Staphylococcal biofilm disassembly. Trends Microbiol 2011; 19(9): 449-55.
  • 9. Cassat JE, Lee CY, Smeltzer MS. Investigation of biofilm formation in clinical isolates of Staphylococcus aureus. Methods Mol Biol 2007; 391: 127-44.
  • 10. Ceri H, Olson ME, Stremick C, Read RR, Morck D, Buret A. The Calgary Biofilm Device: new technology for rapid determination of antibiotic susceptibilities of bacterial biofilms. J Clin Microbiol 1999; 37(6): 1771-6.
  • 11. Christiensen G, Simpson WA, Jounger JJ, Baddour LM, Barret FF, Melton DM, Beachey EH. Adherence of coagulase-negative staphylococci to plastic tissue culture plates: a quantitative model for the adherence of staphylococci to medical devices. J Clin Microbiol 1985; 22(6): 996-1006.
  • 12. Ciftci A, Findik A, Onuk EE, Savasan S. Detection of methicillin resistance and slime factor production of Staphylococcus aureus in bovine mastitis. Brazilian J Microbiol 2009; 40(2): 254-61.
  • 13. Clinical and Laboratory Standards Institute (CLSI). Performance standards for antimicrobial susceptibility testing. Sixteenth Informational Supplement 2006; M1000-S16. Wayne S. PA, US.
  • 14. Çiftçi A, İça T, Onuk EE, Baş B, Tosun G. Çeşitli klinik örneklerden izole edilen Staphylococcus aureus suşlarında slime faktör üretimi ve antibiyotik dirençliliği. Vet Hek Mikrobiyol Derg 2003; 3(1-2): 51-5.
  • 15. Donlan RM, Murga R, Bell M, Toscano CM, Carr JH, Novicki TJ, Zuckerman C, Corey LC, Miller JM. Protocol for detection of biofilms on needleless connectors attached to central venous catheters. J Clin Microbiol 2001; 39(2): 750-3.
  • 16. Fox LK, Zadoks RN, Gaskins CT. Biofilm production by Staphylococcus aureus associated with intramammary infection. Vet Microbiol 2005; 107(3-4): 295-9.
  • 17. Freeman DJ, Falkiner FR, Keane CT. New method for detecting slime production by coagulase negative staphylococci. J Clin Pathol 1989; 42(8): 872-4.
  • 18. Fux CA, Costerton JW, Stewart PS, Stoodley P. Survival strategies of infectious biofilms. Trends Microbiol 2005; 13(1): 34-40.
  • 19. Holt JG, Krieg NR, Sneath PHA, Staley JT, Williams ST. Bergey’s Manual of Determinative Bacteriology. Ninth Edition. Philadelphia: Lippincott Williams&Wilkins, 1994; p.787.
  • 20. Izano EA, Amarante MA, Kher WB, Kaplan JB. Differential roles of poly-N-acetylglucosamine surface polysaccharide and extracellular DNA in Staphylococcus aureus and Staphylococcus epidermidis biofilms. Appl Environ Microbiol 2008; 74(2): 470-6.
  • 21. Johannes KM, Knobloch M, Matthias A, Rohde H, Mack D. Evaluation of different methods of biofilm formation in Staphylococcus aureus. Med Microbiol Immunol 2002; 191(2): 101-6.
  • 22. Krukowski H, Szymankiewicz M, Lisowski A. Slime production of Staphylococcus aureus strains isolated from cases bovine mastitis. Pol J Microbiol 2008; 57(3): 253-5.
  • 23. Ludwicka A, Switalski LM, Lundin A, Pulverer G, Wadstrom T. Bioluminescent assays for measurement of bacterial attachment to polyethylene. J Microbiol Methods 1985; 4(3-4): 169-77.
  • 24. Melchior MB, Fink-Gremmels J, Gaastra W. Comparative assessment of the antimicrobial susceptibility of Staphylococcus aureus isolates from bovine mastitis in biofilm versus planktonic culture. J Vet Med B Infect Dis Vet Public Health 2006; 53(7): 326-32.
  • 25. Olson ME, Ceri H, Morck DW, Buret AG, Read RR. Biofilm bacteria: formation and comparative susceptibility to antibiotics. Can J Vet Res 2002; 66(2): 86-92.
  • 26. Peacock S. Staphylococcus aureus. Gillespie SH. Hawkey PM. Eds. In: Principles and Practice of Clinical Bacteriology. England: John Wiley&Sons Ltd., 2006; pp. 73-98.
  • 27. Pfaller MA, Davenport D, Bale M, Barret M, Koontz F, Massanari R. Development of the quantitative micro-test for slime production by coagulase negative staphylococci. Eur J Clin Microbiol Infect Dis 1988; 7(1): 30-3.
  • 28. Quinn PJ, Markey BK, Carter ME, Donnelly WJ, Leonard FC. Veterinary Microbiology and Microbial Disease. Iowa: Blackwell Publishing Professional, 2002; p. 536.
  • 29. Sanchez CJ, Mende K, Beckius ML, Akers KS, Romano DR, Wenke JC, Murray CK. Biofilm formation by clinical isolates and the implications in chronic infections. BMC Infect Dis 2013; 13: 47.
  • 30. Stewart PS. Theoretical aspects of antibiotic diffusion into microbial biofilms. Antimicrob Agents Chemother 1996; 40(11): 2517-22.
  • 31. Türkyılmaz S, Eskiizmirliler S. Detection of slime factor production and antibiotic resistance in Staphylococcus strains isolated from various animal clinical samples. Turk J Vet Anim Sci 2006; 30: 201-6.
  • 32. Türkyılmaz S, Kaya O. Determination of some virulence factors in Staphylococcus spp. isolated from various clinical samples. Turk J Vet Anim Sci 2006; 30: 127-32.
  • 33. Zufferey J, Rime B, Francioli P, Bille J. Simple method for rapid diagnosis of catheter–associated infection by direct Acridine orange staining of catheter tips. J Clin Microbiol 1988; 26(2): 175-7.

Slime Positivity and Antibiotic Resistance in Staphylococcus aureus Strains Isolated from Various Animal Clinical Samples

Year 2014, Volume: 11 Issue: 3, 163 - 168, 01.12.2014

Abstract

In this study, a total of 50 Staphylococcus aureus strains isolated from bovine milk, bovine uterus swabs,

dog ear swab, dog skin swab and chicken synovial fluid samples were examined in terms of slime factor production

and antibiotic resistance. The slime production of strains was determined by using Congo red agar and standard tube

methods. Of 50 S. aureus strains, 21 (42%) and 18 (36%) were determined as slime positive in the Congo red agar

and standard tube methods, respectively. A significant difference was not found between two different methods

(p>0.05). Standard E-test method was used to detect the antibiotic resistance of isolates. Among the isolates, the

highest resistance rate was against penicillin G (20%), followed by cephalothin (16%), oxacillin (16%) and tetracycline

(14%). Only one (2%) of the tested strains was resistant to enrofloxacin. However, resistance to erythromycin,

trimethoprim/sulfamethoxazole, rifampin and gentamicin were not determined in any strains. When the antibiotic

resistance of slime positive and negative strains was compared, resistance to penicillin G, cephalothin and oxacillin

was significantly high in slime positive strains (p<0.05).

References

  • 1. Aguilar B, Amorena B, Iturralde M. Effect of slime on adherence of Staphylococcus aureus isolated from bovine and ovine mastitis. Vet Microbiol 2001; 78(2): 183-91.
  • 2. Amorena B, Gracia E, Monzon M, Leiva J, Oteiza C, Perez M, Alabart JL, Hernandez-Yago J. Antibiotic susceptibility assay for Staphylococcus aureus in biofilms developed in vitro. J Antimicrob Chemother 1999; 44(1): 43-55.
  • 3. Archer NK, Mazaitis MJ, Costerton JW, Leid JG, Powers ME, Shirtliff ME. Staphylococcus aureus biofilms. Properties, regulation and roles in human disease. Virulence 2011; 2(5): 445-59.
  • 4. Arciola CR, Baldassarri L, Montanaro L. Presence of icaA and icaD genes and slime production in a collection of staphylococcal strains from catheter-associated infections. J Clin Microbiol 2001; 39(6): 2151-6.
  • 5. Arslan S, Özkardeş F. Slime production and antibiotic susceptibility in staphylococci isolated from clinical samples. Mem Inst Oswaldo Cruz 2007; 102(1): 29-33.
  • 6. Barrio B, Vangroenweghe F, Dosogne H, Burvenich C. Decreased neutrophil bactericidal activity during phagocytosis of a slime-producing Staphylococcus aureus strain. Vet Res 2000; 31(6): 603-9.
  • 7. Baselga R, Albizu I, de la Cruz M, Del Cacho E, Barberan M, Amorena B. Phase variation of slime production in Staphylococcus aureus: implications in colonization and virulence. Infect Immun 1993; 61(11): 4857-62.
  • 8. Boles BR, Horswill AR. Staphylococcal biofilm disassembly. Trends Microbiol 2011; 19(9): 449-55.
  • 9. Cassat JE, Lee CY, Smeltzer MS. Investigation of biofilm formation in clinical isolates of Staphylococcus aureus. Methods Mol Biol 2007; 391: 127-44.
  • 10. Ceri H, Olson ME, Stremick C, Read RR, Morck D, Buret A. The Calgary Biofilm Device: new technology for rapid determination of antibiotic susceptibilities of bacterial biofilms. J Clin Microbiol 1999; 37(6): 1771-6.
  • 11. Christiensen G, Simpson WA, Jounger JJ, Baddour LM, Barret FF, Melton DM, Beachey EH. Adherence of coagulase-negative staphylococci to plastic tissue culture plates: a quantitative model for the adherence of staphylococci to medical devices. J Clin Microbiol 1985; 22(6): 996-1006.
  • 12. Ciftci A, Findik A, Onuk EE, Savasan S. Detection of methicillin resistance and slime factor production of Staphylococcus aureus in bovine mastitis. Brazilian J Microbiol 2009; 40(2): 254-61.
  • 13. Clinical and Laboratory Standards Institute (CLSI). Performance standards for antimicrobial susceptibility testing. Sixteenth Informational Supplement 2006; M1000-S16. Wayne S. PA, US.
  • 14. Çiftçi A, İça T, Onuk EE, Baş B, Tosun G. Çeşitli klinik örneklerden izole edilen Staphylococcus aureus suşlarında slime faktör üretimi ve antibiyotik dirençliliği. Vet Hek Mikrobiyol Derg 2003; 3(1-2): 51-5.
  • 15. Donlan RM, Murga R, Bell M, Toscano CM, Carr JH, Novicki TJ, Zuckerman C, Corey LC, Miller JM. Protocol for detection of biofilms on needleless connectors attached to central venous catheters. J Clin Microbiol 2001; 39(2): 750-3.
  • 16. Fox LK, Zadoks RN, Gaskins CT. Biofilm production by Staphylococcus aureus associated with intramammary infection. Vet Microbiol 2005; 107(3-4): 295-9.
  • 17. Freeman DJ, Falkiner FR, Keane CT. New method for detecting slime production by coagulase negative staphylococci. J Clin Pathol 1989; 42(8): 872-4.
  • 18. Fux CA, Costerton JW, Stewart PS, Stoodley P. Survival strategies of infectious biofilms. Trends Microbiol 2005; 13(1): 34-40.
  • 19. Holt JG, Krieg NR, Sneath PHA, Staley JT, Williams ST. Bergey’s Manual of Determinative Bacteriology. Ninth Edition. Philadelphia: Lippincott Williams&Wilkins, 1994; p.787.
  • 20. Izano EA, Amarante MA, Kher WB, Kaplan JB. Differential roles of poly-N-acetylglucosamine surface polysaccharide and extracellular DNA in Staphylococcus aureus and Staphylococcus epidermidis biofilms. Appl Environ Microbiol 2008; 74(2): 470-6.
  • 21. Johannes KM, Knobloch M, Matthias A, Rohde H, Mack D. Evaluation of different methods of biofilm formation in Staphylococcus aureus. Med Microbiol Immunol 2002; 191(2): 101-6.
  • 22. Krukowski H, Szymankiewicz M, Lisowski A. Slime production of Staphylococcus aureus strains isolated from cases bovine mastitis. Pol J Microbiol 2008; 57(3): 253-5.
  • 23. Ludwicka A, Switalski LM, Lundin A, Pulverer G, Wadstrom T. Bioluminescent assays for measurement of bacterial attachment to polyethylene. J Microbiol Methods 1985; 4(3-4): 169-77.
  • 24. Melchior MB, Fink-Gremmels J, Gaastra W. Comparative assessment of the antimicrobial susceptibility of Staphylococcus aureus isolates from bovine mastitis in biofilm versus planktonic culture. J Vet Med B Infect Dis Vet Public Health 2006; 53(7): 326-32.
  • 25. Olson ME, Ceri H, Morck DW, Buret AG, Read RR. Biofilm bacteria: formation and comparative susceptibility to antibiotics. Can J Vet Res 2002; 66(2): 86-92.
  • 26. Peacock S. Staphylococcus aureus. Gillespie SH. Hawkey PM. Eds. In: Principles and Practice of Clinical Bacteriology. England: John Wiley&Sons Ltd., 2006; pp. 73-98.
  • 27. Pfaller MA, Davenport D, Bale M, Barret M, Koontz F, Massanari R. Development of the quantitative micro-test for slime production by coagulase negative staphylococci. Eur J Clin Microbiol Infect Dis 1988; 7(1): 30-3.
  • 28. Quinn PJ, Markey BK, Carter ME, Donnelly WJ, Leonard FC. Veterinary Microbiology and Microbial Disease. Iowa: Blackwell Publishing Professional, 2002; p. 536.
  • 29. Sanchez CJ, Mende K, Beckius ML, Akers KS, Romano DR, Wenke JC, Murray CK. Biofilm formation by clinical isolates and the implications in chronic infections. BMC Infect Dis 2013; 13: 47.
  • 30. Stewart PS. Theoretical aspects of antibiotic diffusion into microbial biofilms. Antimicrob Agents Chemother 1996; 40(11): 2517-22.
  • 31. Türkyılmaz S, Eskiizmirliler S. Detection of slime factor production and antibiotic resistance in Staphylococcus strains isolated from various animal clinical samples. Turk J Vet Anim Sci 2006; 30: 201-6.
  • 32. Türkyılmaz S, Kaya O. Determination of some virulence factors in Staphylococcus spp. isolated from various clinical samples. Turk J Vet Anim Sci 2006; 30: 127-32.
  • 33. Zufferey J, Rime B, Francioli P, Bille J. Simple method for rapid diagnosis of catheter–associated infection by direct Acridine orange staining of catheter tips. J Clin Microbiol 1988; 26(2): 175-7.
There are 33 citations in total.

Details

Journal Section Articles
Authors

Esra Şeker

Nilgün Ünal This is me

Publication Date December 1, 2014
Submission Date January 15, 2017
Acceptance Date November 1, 2014
Published in Issue Year 2014 Volume: 11 Issue: 3

Cite

APA Şeker, E., & Ünal, N. (2014). Çeşitli Hayvansal Klinik Örneklerden İzole Edilen Staphylococcus aureus Suşlarında Slaym Pozitifliği ve Antibiyotik Direnci. Erciyes Üniversitesi Veteriner Fakültesi Dergisi, 11(3), 163-168.
AMA Şeker E, Ünal N. Çeşitli Hayvansal Klinik Örneklerden İzole Edilen Staphylococcus aureus Suşlarında Slaym Pozitifliği ve Antibiyotik Direnci. Erciyes Üniv Vet Fak Derg. December 2014;11(3):163-168.
Chicago Şeker, Esra, and Nilgün Ünal. “Çeşitli Hayvansal Klinik Örneklerden İzole Edilen Staphylococcus Aureus Suşlarında Slaym Pozitifliği Ve Antibiyotik Direnci”. Erciyes Üniversitesi Veteriner Fakültesi Dergisi 11, no. 3 (December 2014): 163-68.
EndNote Şeker E, Ünal N (December 1, 2014) Çeşitli Hayvansal Klinik Örneklerden İzole Edilen Staphylococcus aureus Suşlarında Slaym Pozitifliği ve Antibiyotik Direnci. Erciyes Üniversitesi Veteriner Fakültesi Dergisi 11 3 163–168.
IEEE E. Şeker and N. Ünal, “Çeşitli Hayvansal Klinik Örneklerden İzole Edilen Staphylococcus aureus Suşlarında Slaym Pozitifliği ve Antibiyotik Direnci”, Erciyes Üniv Vet Fak Derg, vol. 11, no. 3, pp. 163–168, 2014.
ISNAD Şeker, Esra - Ünal, Nilgün. “Çeşitli Hayvansal Klinik Örneklerden İzole Edilen Staphylococcus Aureus Suşlarında Slaym Pozitifliği Ve Antibiyotik Direnci”. Erciyes Üniversitesi Veteriner Fakültesi Dergisi 11/3 (December 2014), 163-168.
JAMA Şeker E, Ünal N. Çeşitli Hayvansal Klinik Örneklerden İzole Edilen Staphylococcus aureus Suşlarında Slaym Pozitifliği ve Antibiyotik Direnci. Erciyes Üniv Vet Fak Derg. 2014;11:163–168.
MLA Şeker, Esra and Nilgün Ünal. “Çeşitli Hayvansal Klinik Örneklerden İzole Edilen Staphylococcus Aureus Suşlarında Slaym Pozitifliği Ve Antibiyotik Direnci”. Erciyes Üniversitesi Veteriner Fakültesi Dergisi, vol. 11, no. 3, 2014, pp. 163-8.
Vancouver Şeker E, Ünal N. Çeşitli Hayvansal Klinik Örneklerden İzole Edilen Staphylococcus aureus Suşlarında Slaym Pozitifliği ve Antibiyotik Direnci. Erciyes Üniv Vet Fak Derg. 2014;11(3):163-8.